$$$\frac{2}{1 - x^{2}}$$$ 的积分
您的输入
求$$$\int \frac{2}{1 - x^{2}}\, dx$$$。
解答
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \frac{1}{1 - x^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{2}{1 - x^{2}} d x}}} = {\color{red}{\left(2 \int{\frac{1}{1 - x^{2}} d x}\right)}}$$
进行部分分式分解(步骤可见»):
$$2 {\color{red}{\int{\frac{1}{1 - x^{2}} d x}}} = 2 {\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$
逐项积分:
$$2 {\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}} = 2 {\color{red}{\left(- \int{\frac{1}{2 \left(x - 1\right)} d x} + \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = \frac{1}{x + 1}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- 2 \int{\frac{1}{2 \left(x - 1\right)} d x} + 2 {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}} = - 2 \int{\frac{1}{2 \left(x - 1\right)} d x} + 2 {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}$$
设$$$u=x + 1$$$。
则$$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
该积分可以改写为
$$- 2 \int{\frac{1}{2 \left(x - 1\right)} d x} + {\color{red}{\int{\frac{1}{x + 1} d x}}} = - 2 \int{\frac{1}{2 \left(x - 1\right)} d x} + {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- 2 \int{\frac{1}{2 \left(x - 1\right)} d x} + {\color{red}{\int{\frac{1}{u} d u}}} = - 2 \int{\frac{1}{2 \left(x - 1\right)} d x} + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=x + 1$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} - 2 \int{\frac{1}{2 \left(x - 1\right)} d x} = \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)} - 2 \int{\frac{1}{2 \left(x - 1\right)} d x}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = \frac{1}{x - 1}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\ln{\left(\left|{x + 1}\right| \right)} - 2 {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}} = \ln{\left(\left|{x + 1}\right| \right)} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}$$
设$$$u=x - 1$$$。
则$$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
所以,
$$\ln{\left(\left|{x + 1}\right| \right)} - {\color{red}{\int{\frac{1}{x - 1} d x}}} = \ln{\left(\left|{x + 1}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\ln{\left(\left|{x + 1}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = \ln{\left(\left|{x + 1}\right| \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=x - 1$$$:
$$\ln{\left(\left|{x + 1}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{x + 1}\right| \right)} - \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}$$
因此,
$$\int{\frac{2}{1 - x^{2}} d x} = - \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}$$
加上积分常数:
$$\int{\frac{2}{1 - x^{2}} d x} = - \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}+C$$
答案
$$$\int \frac{2}{1 - x^{2}}\, dx = \left(- \ln\left(\left|{x - 1}\right|\right) + \ln\left(\left|{x + 1}\right|\right)\right) + C$$$A