$$$\csc^{4}{\left(x \right)}$$$ 的积分

该计算器将求出$$$\csc^{4}{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \csc^{4}{\left(x \right)}\, dx$$$

解答

提取出两个余割,并将其余部分都用余切表示,使用包含 $$$\alpha=x$$$ 的公式 $$$\csc^2\left( \alpha \right)=\cot^2\left( \alpha \right)+1$$$:

$${\color{red}{\int{\csc^{4}{\left(x \right)} d x}}} = {\color{red}{\int{\left(\cot^{2}{\left(x \right)} + 1\right) \csc^{2}{\left(x \right)} d x}}}$$

$$$u=\cot{\left(x \right)}$$$

$$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (步骤见»),并有$$$\csc^{2}{\left(x \right)} dx = - du$$$

该积分可以改写为

$${\color{red}{\int{\left(\cot^{2}{\left(x \right)} + 1\right) \csc^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\left(- u^{2} - 1\right)d u}}}$$

$$$c=-1$$$$$$f{\left(u \right)} = u^{2} + 1$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\left(- u^{2} - 1\right)d u}}} = {\color{red}{\left(- \int{\left(u^{2} + 1\right)d u}\right)}}$$

逐项积分:

$$- {\color{red}{\int{\left(u^{2} + 1\right)d u}}} = - {\color{red}{\left(\int{1 d u} + \int{u^{2} d u}\right)}}$$

应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$

$$- \int{u^{2} d u} - {\color{red}{\int{1 d u}}} = - \int{u^{2} d u} - {\color{red}{u}}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$- u - {\color{red}{\int{u^{2} d u}}}=- u - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- u - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

回忆一下 $$$u=\cot{\left(x \right)}$$$:

$$- {\color{red}{u}} - \frac{{\color{red}{u}}^{3}}{3} = - {\color{red}{\cot{\left(x \right)}}} - \frac{{\color{red}{\cot{\left(x \right)}}}^{3}}{3}$$

因此,

$$\int{\csc^{4}{\left(x \right)} d x} = - \frac{\cot^{3}{\left(x \right)}}{3} - \cot{\left(x \right)}$$

加上积分常数:

$$\int{\csc^{4}{\left(x \right)} d x} = - \frac{\cot^{3}{\left(x \right)}}{3} - \cot{\left(x \right)}+C$$

答案

$$$\int \csc^{4}{\left(x \right)}\, dx = \left(- \frac{\cot^{3}{\left(x \right)}}{3} - \cot{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly