$$$\cos{\left(\pi n x \right)}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \cos{\left(\pi n x \right)}\, dx$$$。
解答
设$$$u=\pi n x$$$。
则$$$du=\left(\pi n x\right)^{\prime }dx = \pi n dx$$$ (步骤见»),并有$$$dx = \frac{du}{\pi n}$$$。
所以,
$${\color{red}{\int{\cos{\left(\pi n x \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{\pi n} d u}}}$$
对 $$$c=\frac{1}{\pi n}$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{\cos{\left(u \right)}}{\pi n} d u}}} = {\color{red}{\frac{\int{\cos{\left(u \right)} d u}}{\pi n}}}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{\pi n} = \frac{{\color{red}{\sin{\left(u \right)}}}}{\pi n}$$
回忆一下 $$$u=\pi n x$$$:
$$\frac{\sin{\left({\color{red}{u}} \right)}}{\pi n} = \frac{\sin{\left({\color{red}{\pi n x}} \right)}}{\pi n}$$
因此,
$$\int{\cos{\left(\pi n x \right)} d x} = \frac{\sin{\left(\pi n x \right)}}{\pi n}$$
加上积分常数:
$$\int{\cos{\left(\pi n x \right)} d x} = \frac{\sin{\left(\pi n x \right)}}{\pi n}+C$$
答案
$$$\int \cos{\left(\pi n x \right)}\, dx = \frac{\sin{\left(\pi n x \right)}}{\pi n} + C$$$A