$$$\cos{\left(\ln\left(11 x\right) \right)}$$$ 的积分

该计算器将求出$$$\cos{\left(\ln\left(11 x\right) \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \cos{\left(\ln\left(11 x\right) \right)}\, dx$$$

解答

$$$u=11 x$$$

$$$du=\left(11 x\right)^{\prime }dx = 11 dx$$$ (步骤见»),并有$$$dx = \frac{du}{11}$$$

所以,

$${\color{red}{\int{\cos{\left(\ln{\left(11 x \right)} \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(\ln{\left(u \right)} \right)}}{11} d u}}}$$

$$$c=\frac{1}{11}$$$$$$f{\left(u \right)} = \cos{\left(\ln{\left(u \right)} \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\frac{\cos{\left(\ln{\left(u \right)} \right)}}{11} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}{11}\right)}}$$

对于积分$$$\int{\cos{\left(\ln{\left(u \right)} \right)} d u}$$$,使用分部积分法$$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$

$$$\operatorname{g}=\cos{\left(\ln{\left(u \right)} \right)}$$$$$$\operatorname{dv}=du$$$

$$$\operatorname{dg}=\left(\cos{\left(\ln{\left(u \right)} \right)}\right)^{\prime }du=- \frac{\sin{\left(\ln{\left(u \right)} \right)}}{u} du$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d u}=u$$$ (步骤见 »)。

因此,

$$\frac{{\color{red}{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}}}{11}=\frac{{\color{red}{\left(\cos{\left(\ln{\left(u \right)} \right)} \cdot u-\int{u \cdot \left(- \frac{\sin{\left(\ln{\left(u \right)} \right)}}{u}\right) d u}\right)}}}{11}=\frac{{\color{red}{\left(u \cos{\left(\ln{\left(u \right)} \right)} - \int{\left(- \sin{\left(\ln{\left(u \right)} \right)}\right)d u}\right)}}}{11}$$

$$$c=-1$$$$$$f{\left(u \right)} = \sin{\left(\ln{\left(u \right)} \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$\frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} - \frac{{\color{red}{\int{\left(- \sin{\left(\ln{\left(u \right)} \right)}\right)d u}}}}{11} = \frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} - \frac{{\color{red}{\left(- \int{\sin{\left(\ln{\left(u \right)} \right)} d u}\right)}}}{11}$$

对于积分$$$\int{\sin{\left(\ln{\left(u \right)} \right)} d u}$$$,使用分部积分法$$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$

$$$\operatorname{g}=\sin{\left(\ln{\left(u \right)} \right)}$$$$$$\operatorname{dv}=du$$$

$$$\operatorname{dg}=\left(\sin{\left(\ln{\left(u \right)} \right)}\right)^{\prime }du=\frac{\cos{\left(\ln{\left(u \right)} \right)}}{u} du$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d u}=u$$$ (步骤见 »)。

因此,

$$\frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} + \frac{{\color{red}{\int{\sin{\left(\ln{\left(u \right)} \right)} d u}}}}{11}=\frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} + \frac{{\color{red}{\left(\sin{\left(\ln{\left(u \right)} \right)} \cdot u-\int{u \cdot \frac{\cos{\left(\ln{\left(u \right)} \right)}}{u} d u}\right)}}}{11}=\frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} + \frac{{\color{red}{\left(u \sin{\left(\ln{\left(u \right)} \right)} - \int{\cos{\left(\ln{\left(u \right)} \right)} d u}\right)}}}{11}$$

我们得到了一个之前见过的积分。

因此,我们得到了关于该积分的如下简单等式:

$$\frac{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}{11} = \frac{u \sin{\left(\ln{\left(u \right)} \right)}}{11} + \frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} - \frac{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}{11}$$

解得

$$\int{\cos{\left(\ln{\left(u \right)} \right)} d u} = \frac{u \left(\sin{\left(\ln{\left(u \right)} \right)} + \cos{\left(\ln{\left(u \right)} \right)}\right)}{2}$$

所以,

$$\frac{{\color{red}{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}}}{11} = \frac{{\color{red}{\left(\frac{u \left(\sin{\left(\ln{\left(u \right)} \right)} + \cos{\left(\ln{\left(u \right)} \right)}\right)}{2}\right)}}}{11}$$

回忆一下 $$$u=11 x$$$:

$$\frac{{\color{red}{u}} \left(\sin{\left(\ln{\left({\color{red}{u}} \right)} \right)} + \cos{\left(\ln{\left({\color{red}{u}} \right)} \right)}\right)}{22} = \frac{{\color{red}{\left(11 x\right)}} \left(\sin{\left(\ln{\left({\color{red}{\left(11 x\right)}} \right)} \right)} + \cos{\left(\ln{\left({\color{red}{\left(11 x\right)}} \right)} \right)}\right)}{22}$$

因此,

$$\int{\cos{\left(\ln{\left(11 x \right)} \right)} d x} = \frac{x \left(\sin{\left(\ln{\left(11 x \right)} \right)} + \cos{\left(\ln{\left(11 x \right)} \right)}\right)}{2}$$

化简:

$$\int{\cos{\left(\ln{\left(11 x \right)} \right)} d x} = \frac{\sqrt{2} x \sin{\left(\ln{\left(x \right)} + \frac{\pi}{4} + \ln{\left(11 \right)} \right)}}{2}$$

加上积分常数:

$$\int{\cos{\left(\ln{\left(11 x \right)} \right)} d x} = \frac{\sqrt{2} x \sin{\left(\ln{\left(x \right)} + \frac{\pi}{4} + \ln{\left(11 \right)} \right)}}{2}+C$$

答案

$$$\int \cos{\left(\ln\left(11 x\right) \right)}\, dx = \frac{\sqrt{2} x \sin{\left(\ln\left(x\right) + \frac{\pi}{4} + \ln\left(11\right) \right)}}{2} + C$$$A


Please try a new game Rotatly