$$$\cos{\left(3 x \right)}$$$ 的积分
您的输入
求$$$\int \cos{\left(3 x \right)}\, dx$$$。
解答
设$$$u=3 x$$$。
则$$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (步骤见»),并有$$$dx = \frac{du}{3}$$$。
因此,
$${\color{red}{\int{\cos{\left(3 x \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}$$
对 $$$c=\frac{1}{3}$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{3} = \frac{{\color{red}{\sin{\left(u \right)}}}}{3}$$
回忆一下 $$$u=3 x$$$:
$$\frac{\sin{\left({\color{red}{u}} \right)}}{3} = \frac{\sin{\left({\color{red}{\left(3 x\right)}} \right)}}{3}$$
因此,
$$\int{\cos{\left(3 x \right)} d x} = \frac{\sin{\left(3 x \right)}}{3}$$
加上积分常数:
$$\int{\cos{\left(3 x \right)} d x} = \frac{\sin{\left(3 x \right)}}{3}+C$$
答案
$$$\int \cos{\left(3 x \right)}\, dx = \frac{\sin{\left(3 x \right)}}{3} + C$$$A