$$$c + f^{2} x^{2}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \left(c + f^{2} x^{2}\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(c + f^{2} x^{2}\right)d x}}} = {\color{red}{\left(\int{c d x} + \int{f^{2} x^{2} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=c$$$:
$$\int{f^{2} x^{2} d x} + {\color{red}{\int{c d x}}} = \int{f^{2} x^{2} d x} + {\color{red}{c x}}$$
对 $$$c=f^{2}$$$ 和 $$$f{\left(x \right)} = x^{2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$c x + {\color{red}{\int{f^{2} x^{2} d x}}} = c x + {\color{red}{f^{2} \int{x^{2} d x}}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$:
$$c x + f^{2} {\color{red}{\int{x^{2} d x}}}=c x + f^{2} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=c x + f^{2} {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
因此,
$$\int{\left(c + f^{2} x^{2}\right)d x} = c x + \frac{f^{2} x^{3}}{3}$$
化简:
$$\int{\left(c + f^{2} x^{2}\right)d x} = x \left(c + \frac{f^{2} x^{2}}{3}\right)$$
加上积分常数:
$$\int{\left(c + f^{2} x^{2}\right)d x} = x \left(c + \frac{f^{2} x^{2}}{3}\right)+C$$
答案
$$$\int \left(c + f^{2} x^{2}\right)\, dx = x \left(c + \frac{f^{2} x^{2}}{3}\right) + C$$$A