$$$84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)}$$$ 关于$$$x$$$的积分

该计算器将求出$$$84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)}$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int 84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)}\, dx$$$

解答

$$$c=84 i n t$$$$$$f{\left(x \right)} = \sin{\left(3 x \right)} \cos{\left(3 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)} d x}}} = {\color{red}{\left(84 i n t \int{\sin{\left(3 x \right)} \cos{\left(3 x \right)} d x}\right)}}$$

$$$u=\sin{\left(3 x \right)}$$$

$$$du=\left(\sin{\left(3 x \right)}\right)^{\prime }dx = 3 \cos{\left(3 x \right)} dx$$$ (步骤见»),并有$$$\cos{\left(3 x \right)} dx = \frac{du}{3}$$$

因此,

$$84 i n t {\color{red}{\int{\sin{\left(3 x \right)} \cos{\left(3 x \right)} d x}}} = 84 i n t {\color{red}{\int{\frac{u}{3} d u}}}$$

$$$c=\frac{1}{3}$$$$$$f{\left(u \right)} = u$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$84 i n t {\color{red}{\int{\frac{u}{3} d u}}} = 84 i n t {\color{red}{\left(\frac{\int{u d u}}{3}\right)}}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$28 i n t {\color{red}{\int{u d u}}}=28 i n t {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=28 i n t {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$

回忆一下 $$$u=\sin{\left(3 x \right)}$$$:

$$14 i n t {\color{red}{u}}^{2} = 14 i n t {\color{red}{\sin{\left(3 x \right)}}}^{2}$$

因此,

$$\int{84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)} d x} = 14 i n t \sin^{2}{\left(3 x \right)}$$

加上积分常数:

$$\int{84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)} d x} = 14 i n t \sin^{2}{\left(3 x \right)}+C$$

答案

$$$\int 84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)}\, dx = 14 i n t \sin^{2}{\left(3 x \right)} + C$$$A


Please try a new game Rotatly