$$$\frac{7 x}{12} - 6$$$ 的积分
您的输入
求$$$\int \left(\frac{7 x}{12} - 6\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(\frac{7 x}{12} - 6\right)d x}}} = {\color{red}{\left(- \int{6 d x} + \int{\frac{7 x}{12} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=6$$$:
$$\int{\frac{7 x}{12} d x} - {\color{red}{\int{6 d x}}} = \int{\frac{7 x}{12} d x} - {\color{red}{\left(6 x\right)}}$$
对 $$$c=\frac{7}{12}$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- 6 x + {\color{red}{\int{\frac{7 x}{12} d x}}} = - 6 x + {\color{red}{\left(\frac{7 \int{x d x}}{12}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$- 6 x + \frac{7 {\color{red}{\int{x d x}}}}{12}=- 6 x + \frac{7 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{12}=- 6 x + \frac{7 {\color{red}{\left(\frac{x^{2}}{2}\right)}}}{12}$$
因此,
$$\int{\left(\frac{7 x}{12} - 6\right)d x} = \frac{7 x^{2}}{24} - 6 x$$
化简:
$$\int{\left(\frac{7 x}{12} - 6\right)d x} = \frac{x \left(7 x - 144\right)}{24}$$
加上积分常数:
$$\int{\left(\frac{7 x}{12} - 6\right)d x} = \frac{x \left(7 x - 144\right)}{24}+C$$
答案
$$$\int \left(\frac{7 x}{12} - 6\right)\, dx = \frac{x \left(7 x - 144\right)}{24} + C$$$A