$$$160 \ln\left(2\right)$$$ 的积分
您的输入
求$$$\int 160 \ln\left(2\right)\, dx$$$。
解答
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=160 \ln{\left(2 \right)}$$$:
$${\color{red}{\int{160 \ln{\left(2 \right)} d x}}} = {\color{red}{\left(160 x \ln{\left(2 \right)}\right)}}$$
因此,
$$\int{160 \ln{\left(2 \right)} d x} = 160 x \ln{\left(2 \right)}$$
加上积分常数:
$$\int{160 \ln{\left(2 \right)} d x} = 160 x \ln{\left(2 \right)}+C$$
答案
$$$\int 160 \ln\left(2\right)\, dx = 160 x \ln\left(2\right) + C$$$A
Please try a new game Rotatly