$$$2 \sin{\left(2 x \right)} \sin{\left(3 x \right)}$$$ 的积分
您的输入
求$$$\int 2 \sin{\left(2 x \right)} \sin{\left(3 x \right)}\, dx$$$。
解答
使用公式 $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$,取 $$$\alpha=2 x$$$ 和 $$$\beta=3 x$$$,将 $$$\sin\left(2 x \right)\sin\left(3 x \right)$$$ 重写:
$${\color{red}{\int{2 \sin{\left(2 x \right)} \sin{\left(3 x \right)} d x}}} = {\color{red}{\int{\left(\cos{\left(x \right)} - \cos{\left(5 x \right)}\right)d x}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = 2 \cos{\left(x \right)} - 2 \cos{\left(5 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\left(\cos{\left(x \right)} - \cos{\left(5 x \right)}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(2 \cos{\left(x \right)} - 2 \cos{\left(5 x \right)}\right)d x}}{2}\right)}}$$
逐项积分:
$$\frac{{\color{red}{\int{\left(2 \cos{\left(x \right)} - 2 \cos{\left(5 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{2 \cos{\left(x \right)} d x} - \int{2 \cos{\left(5 x \right)} d x}\right)}}}{2}$$
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \cos{\left(5 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\int{2 \cos{\left(5 x \right)} d x}}}}{2} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\left(2 \int{\cos{\left(5 x \right)} d x}\right)}}}{2}$$
设$$$u=5 x$$$。
则$$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (步骤见»),并有$$$dx = \frac{du}{5}$$$。
因此,
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\int{\cos{\left(5 x \right)} d x}}} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\int{\frac{\cos{\left(u \right)}}{5} d u}}}$$
对 $$$c=\frac{1}{5}$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\int{\frac{\cos{\left(u \right)}}{5} d u}}} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{5}\right)}}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{5} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{5}$$
回忆一下 $$$u=5 x$$$:
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{5} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{\left(5 x\right)}} \right)}}{5}$$
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \cos{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- \frac{\sin{\left(5 x \right)}}{5} + \frac{{\color{red}{\int{2 \cos{\left(x \right)} d x}}}}{2} = - \frac{\sin{\left(5 x \right)}}{5} + \frac{{\color{red}{\left(2 \int{\cos{\left(x \right)} d x}\right)}}}{2}$$
余弦函数的积分为 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$- \frac{\sin{\left(5 x \right)}}{5} + {\color{red}{\int{\cos{\left(x \right)} d x}}} = - \frac{\sin{\left(5 x \right)}}{5} + {\color{red}{\sin{\left(x \right)}}}$$
因此,
$$\int{2 \sin{\left(2 x \right)} \sin{\left(3 x \right)} d x} = \sin{\left(x \right)} - \frac{\sin{\left(5 x \right)}}{5}$$
加上积分常数:
$$\int{2 \sin{\left(2 x \right)} \sin{\left(3 x \right)} d x} = \sin{\left(x \right)} - \frac{\sin{\left(5 x \right)}}{5}+C$$
答案
$$$\int 2 \sin{\left(2 x \right)} \sin{\left(3 x \right)}\, dx = \left(\sin{\left(x \right)} - \frac{\sin{\left(5 x \right)}}{5}\right) + C$$$A