$$$\frac{2 x^{4}}{x^{4} - 1}$$$ 的积分
您的输入
求$$$\int \frac{2 x^{4}}{x^{4} - 1}\, dx$$$。
解答
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \frac{x^{4}}{x^{4} - 1}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{2 x^{4}}{x^{4} - 1} d x}}} = {\color{red}{\left(2 \int{\frac{x^{4}}{x^{4} - 1} d x}\right)}}$$
改写并拆分该分式:
$$2 {\color{red}{\int{\frac{x^{4}}{x^{4} - 1} d x}}} = 2 {\color{red}{\int{\left(1 + \frac{1}{x^{4} - 1}\right)d x}}}$$
逐项积分:
$$2 {\color{red}{\int{\left(1 + \frac{1}{x^{4} - 1}\right)d x}}} = 2 {\color{red}{\left(\int{1 d x} + \int{\frac{1}{x^{4} - 1} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$:
$$2 \int{\frac{1}{x^{4} - 1} d x} + 2 {\color{red}{\int{1 d x}}} = 2 \int{\frac{1}{x^{4} - 1} d x} + 2 {\color{red}{x}}$$
进行部分分式分解(步骤可见»):
$$2 x + 2 {\color{red}{\int{\frac{1}{x^{4} - 1} d x}}} = 2 x + 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x^{2} + 1\right)} - \frac{1}{4 \left(x + 1\right)} + \frac{1}{4 \left(x - 1\right)}\right)d x}}}$$
逐项积分:
$$2 x + 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x^{2} + 1\right)} - \frac{1}{4 \left(x + 1\right)} + \frac{1}{4 \left(x - 1\right)}\right)d x}}} = 2 x + 2 {\color{red}{\left(\int{\frac{1}{4 \left(x - 1\right)} d x} - \int{\frac{1}{4 \left(x + 1\right)} d x} - \int{\frac{1}{2 \left(x^{2} + 1\right)} d x}\right)}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = \frac{1}{x^{2} + 1}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - 2 {\color{red}{\int{\frac{1}{2 \left(x^{2} + 1\right)} d x}}} = 2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x^{2} + 1} d x}}{2}\right)}}$$
$$$\frac{1}{x^{2} + 1}$$$ 的积分为 $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:
$$2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = 2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - {\color{red}{\operatorname{atan}{\left(x \right)}}}$$
对 $$$c=\frac{1}{4}$$$ 和 $$$f{\left(x \right)} = \frac{1}{x + 1}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 {\color{red}{\int{\frac{1}{4 \left(x + 1\right)} d x}}} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{4}\right)}}$$
设$$$u=x + 1$$$。
则$$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
所以,
$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{2} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
回忆一下 $$$u=x + 1$$$:
$$2 x - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} = 2 x - \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x}$$
对 $$$c=\frac{1}{4}$$$ 和 $$$f{\left(x \right)} = \frac{1}{x - 1}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 {\color{red}{\int{\frac{1}{4 \left(x - 1\right)} d x}}} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{4}\right)}}$$
设$$$u=x - 1$$$。
则$$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
因此,
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{2} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
回忆一下 $$$u=x - 1$$$:
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}$$
因此,
$$\int{\frac{2 x^{4}}{x^{4} - 1} d x} = 2 x + \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}$$
加上积分常数:
$$\int{\frac{2 x^{4}}{x^{4} - 1} d x} = 2 x + \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}+C$$
答案
$$$\int \frac{2 x^{4}}{x^{4} - 1}\, dx = \left(2 x + \frac{\ln\left(\left|{x - 1}\right|\right)}{2} - \frac{\ln\left(\left|{x + 1}\right|\right)}{2} - \operatorname{atan}{\left(x \right)}\right) + C$$$A