$$$12 x - 12$$$ 的积分
您的输入
求$$$\int \left(12 x - 12\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(12 x - 12\right)d x}}} = {\color{red}{\left(- \int{12 d x} + \int{12 x d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=12$$$:
$$\int{12 x d x} - {\color{red}{\int{12 d x}}} = \int{12 x d x} - {\color{red}{\left(12 x\right)}}$$
对 $$$c=12$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- 12 x + {\color{red}{\int{12 x d x}}} = - 12 x + {\color{red}{\left(12 \int{x d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$- 12 x + 12 {\color{red}{\int{x d x}}}=- 12 x + 12 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 12 x + 12 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
因此,
$$\int{\left(12 x - 12\right)d x} = 6 x^{2} - 12 x$$
化简:
$$\int{\left(12 x - 12\right)d x} = 6 x \left(x - 2\right)$$
加上积分常数:
$$\int{\left(12 x - 12\right)d x} = 6 x \left(x - 2\right)+C$$
答案
$$$\int \left(12 x - 12\right)\, dx = 6 x \left(x - 2\right) + C$$$A