$$$\frac{1}{\sqrt{x^{2} + x + 1}}$$$ 的积分
您的输入
求$$$\int \frac{1}{\sqrt{x^{2} + x + 1}}\, dx$$$。
解答
配平方(步骤见»):$$$x^{2} + x + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}$$$:
$${\color{red}{\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{\left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}}} d x}}}$$
设$$$u=x + \frac{1}{2}$$$。
则$$$du=\left(x + \frac{1}{2}\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
因此,
$${\color{red}{\int{\frac{1}{\sqrt{\left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{u^{2} + \frac{3}{4}}} d u}}}$$
设$$$u=\frac{\sqrt{3} \sinh{\left(v \right)}}{2}$$$。
则$$$du=\left(\frac{\sqrt{3} \sinh{\left(v \right)}}{2}\right)^{\prime }dv = \frac{\sqrt{3} \cosh{\left(v \right)}}{2} dv$$$(步骤见»)。
此外,可得$$$v=\operatorname{asinh}{\left(\frac{2 \sqrt{3} u}{3} \right)}$$$。
因此,
$$$\frac{1}{\sqrt{ u ^{2} + \frac{3}{4}}} = \frac{1}{\sqrt{\frac{3 \sinh^{2}{\left( v \right)}}{4} + \frac{3}{4}}}$$$
利用恒等式 $$$\sinh^{2}{\left( v \right)} + 1 = \cosh^{2}{\left( v \right)}$$$:
$$$\frac{1}{\sqrt{\frac{3 \sinh^{2}{\left( v \right)}}{4} + \frac{3}{4}}}=\frac{2 \sqrt{3}}{3 \sqrt{\sinh^{2}{\left( v \right)} + 1}}=\frac{2 \sqrt{3}}{3 \sqrt{\cosh^{2}{\left( v \right)}}}$$$
$$$\frac{2 \sqrt{3}}{3 \sqrt{\cosh^{2}{\left( v \right)}}} = \frac{2 \sqrt{3}}{3 \cosh{\left( v \right)}}$$$
积分变为
$${\color{red}{\int{\frac{1}{\sqrt{u^{2} + \frac{3}{4}}} d u}}} = {\color{red}{\int{1 d v}}}$$
应用常数法则 $$$\int c\, dv = c v$$$,使用 $$$c=1$$$:
$${\color{red}{\int{1 d v}}} = {\color{red}{v}}$$
回忆一下 $$$v=\operatorname{asinh}{\left(\frac{2 \sqrt{3} u}{3} \right)}$$$:
$${\color{red}{v}} = {\color{red}{\operatorname{asinh}{\left(\frac{2 \sqrt{3} u}{3} \right)}}}$$
回忆一下 $$$u=x + \frac{1}{2}$$$:
$$\operatorname{asinh}{\left(\frac{2 \sqrt{3} {\color{red}{u}}}{3} \right)} = \operatorname{asinh}{\left(\frac{2 \sqrt{3} {\color{red}{\left(x + \frac{1}{2}\right)}}}{3} \right)}$$
因此,
$$\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x} = \operatorname{asinh}{\left(\frac{2 \sqrt{3} \left(x + \frac{1}{2}\right)}{3} \right)}$$
化简:
$$\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x} = \operatorname{asinh}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)}$$
加上积分常数:
$$\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x} = \operatorname{asinh}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)}+C$$
答案
$$$\int \frac{1}{\sqrt{x^{2} + x + 1}}\, dx = \operatorname{asinh}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)} + C$$$A