$$$\frac{1}{\sqrt[3]{x} + x}$$$ 的积分
您的输入
求$$$\int \frac{1}{\sqrt[3]{x} + x}\, dx$$$。
解答
设$$$u=\sqrt[3]{x}$$$。
则$$$du=\left(\sqrt[3]{x}\right)^{\prime }dx = \frac{1}{3 x^{\frac{2}{3}}} dx$$$ (步骤见»),并有$$$\frac{dx}{x^{\frac{2}{3}}} = 3 du$$$。
因此,
$${\color{red}{\int{\frac{1}{\sqrt[3]{x} + x} d x}}} = {\color{red}{\int{\frac{3 u}{u^{2} + 1} d u}}}$$
对 $$$c=3$$$ 和 $$$f{\left(u \right)} = \frac{u}{u^{2} + 1}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{3 u}{u^{2} + 1} d u}}} = {\color{red}{\left(3 \int{\frac{u}{u^{2} + 1} d u}\right)}}$$
设$$$v=u^{2} + 1$$$。
则$$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (步骤见»),并有$$$u du = \frac{dv}{2}$$$。
积分变为
$$3 {\color{red}{\int{\frac{u}{u^{2} + 1} d u}}} = 3 {\color{red}{\int{\frac{1}{2 v} d v}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(v \right)} = \frac{1}{v}$$$ 应用常数倍法则 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$:
$$3 {\color{red}{\int{\frac{1}{2 v} d v}}} = 3 {\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}$$
$$$\frac{1}{v}$$$ 的积分为 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{3 {\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{3 {\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
回忆一下 $$$v=u^{2} + 1$$$:
$$\frac{3 \ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{3 \ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{2}$$
回忆一下 $$$u=\sqrt[3]{x}$$$:
$$\frac{3 \ln{\left(1 + {\color{red}{u}}^{2} \right)}}{2} = \frac{3 \ln{\left(1 + {\color{red}{\sqrt[3]{x}}}^{2} \right)}}{2}$$
因此,
$$\int{\frac{1}{\sqrt[3]{x} + x} d x} = \frac{3 \ln{\left(x^{\frac{2}{3}} + 1 \right)}}{2}$$
加上积分常数:
$$\int{\frac{1}{\sqrt[3]{x} + x} d x} = \frac{3 \ln{\left(x^{\frac{2}{3}} + 1 \right)}}{2}+C$$
答案
$$$\int \frac{1}{\sqrt[3]{x} + x}\, dx = \frac{3 \ln\left(x^{\frac{2}{3}} + 1\right)}{2} + C$$$A