$$$\frac{1}{\cos{\left(x \right)} + 1}$$$ 的积分
您的输入
求$$$\int \frac{1}{\cos{\left(x \right)} + 1}\, dx$$$。
解答
使用二倍角公式 $$$\cos\left(x\right)=2\cos^2\left(\frac{x}{2}\right)-1$$$ 重写余弦并化简:
$${\color{red}{\int{\frac{1}{\cos{\left(x \right)} + 1} d x}}} = {\color{red}{\int{\frac{1}{2 \cos^{2}{\left(\frac{x}{2} \right)}} d x}}}$$
设$$$u=\frac{x}{2}$$$。
则$$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (步骤见»),并有$$$dx = 2 du$$$。
所以,
$${\color{red}{\int{\frac{1}{2 \cos^{2}{\left(\frac{x}{2} \right)}} d x}}} = {\color{red}{\int{\frac{1}{\cos^{2}{\left(u \right)}} d u}}}$$
用正割表示被积函数:
$${\color{red}{\int{\frac{1}{\cos^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\sec^{2}{\left(u \right)} d u}}}$$
$$$\sec^{2}{\left(u \right)}$$$ 的积分为 $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(u \right)} d u}}} = {\color{red}{\tan{\left(u \right)}}}$$
回忆一下 $$$u=\frac{x}{2}$$$:
$$\tan{\left({\color{red}{u}} \right)} = \tan{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)}$$
因此,
$$\int{\frac{1}{\cos{\left(x \right)} + 1} d x} = \tan{\left(\frac{x}{2} \right)}$$
加上积分常数:
$$\int{\frac{1}{\cos{\left(x \right)} + 1} d x} = \tan{\left(\frac{x}{2} \right)}+C$$
答案
$$$\int \frac{1}{\cos{\left(x \right)} + 1}\, dx = \tan{\left(\frac{x}{2} \right)} + C$$$A