$$$-6 + \frac{1}{t^{3}}$$$ 的积分

该计算器将求出$$$-6 + \frac{1}{t^{3}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(-6 + \frac{1}{t^{3}}\right)\, dt$$$

解答

逐项积分:

$${\color{red}{\int{\left(-6 + \frac{1}{t^{3}}\right)d t}}} = {\color{red}{\left(- \int{6 d t} + \int{\frac{1}{t^{3}} d t}\right)}}$$

应用常数法则 $$$\int c\, dt = c t$$$,使用 $$$c=6$$$

$$\int{\frac{1}{t^{3}} d t} - {\color{red}{\int{6 d t}}} = \int{\frac{1}{t^{3}} d t} - {\color{red}{\left(6 t\right)}}$$

应用幂法则 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-3$$$

$$- 6 t + {\color{red}{\int{\frac{1}{t^{3}} d t}}}=- 6 t + {\color{red}{\int{t^{-3} d t}}}=- 6 t + {\color{red}{\frac{t^{-3 + 1}}{-3 + 1}}}=- 6 t + {\color{red}{\left(- \frac{t^{-2}}{2}\right)}}=- 6 t + {\color{red}{\left(- \frac{1}{2 t^{2}}\right)}}$$

因此,

$$\int{\left(-6 + \frac{1}{t^{3}}\right)d t} = - 6 t - \frac{1}{2 t^{2}}$$

加上积分常数:

$$\int{\left(-6 + \frac{1}{t^{3}}\right)d t} = - 6 t - \frac{1}{2 t^{2}}+C$$

答案

$$$\int \left(-6 + \frac{1}{t^{3}}\right)\, dt = \left(- 6 t - \frac{1}{2 t^{2}}\right) + C$$$A


Please try a new game Rotatly