$$$\frac{z \operatorname{asin}{\left(\ln\left(x\right) \right)}}{x}$$$ 关于$$$x$$$的积分
相关计算器: 定积分与广义积分计算器
您的输入
求$$$\int \frac{z \operatorname{asin}{\left(\ln\left(x\right) \right)}}{x}\, dx$$$。
解答
对 $$$c=z$$$ 和 $$$f{\left(x \right)} = \frac{\operatorname{asin}{\left(\ln{\left(x \right)} \right)}}{x}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{z \operatorname{asin}{\left(\ln{\left(x \right)} \right)}}{x} d x}}} = {\color{red}{z \int{\frac{\operatorname{asin}{\left(\ln{\left(x \right)} \right)}}{x} d x}}}$$
设$$$u=\ln{\left(x \right)}$$$。
则$$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (步骤见»),并有$$$\frac{dx}{x} = du$$$。
积分变为
$$z {\color{red}{\int{\frac{\operatorname{asin}{\left(\ln{\left(x \right)} \right)}}{x} d x}}} = z {\color{red}{\int{\operatorname{asin}{\left(u \right)} d u}}}$$
对于积分$$$\int{\operatorname{asin}{\left(u \right)} d u}$$$,使用分部积分法$$$\int \operatorname{a} \operatorname{dv} = \operatorname{a}\operatorname{v} - \int \operatorname{v} \operatorname{da}$$$。
设 $$$\operatorname{a}=\operatorname{asin}{\left(u \right)}$$$ 和 $$$\operatorname{dv}=du$$$。
则 $$$\operatorname{da}=\left(\operatorname{asin}{\left(u \right)}\right)^{\prime }du=\frac{du}{\sqrt{1 - u^{2}}}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d u}=u$$$ (步骤见 »)。
因此,
$$z {\color{red}{\int{\operatorname{asin}{\left(u \right)} d u}}}=z {\color{red}{\left(\operatorname{asin}{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{\sqrt{1 - u^{2}}} d u}\right)}}=z {\color{red}{\left(u \operatorname{asin}{\left(u \right)} - \int{\frac{u}{\sqrt{1 - u^{2}}} d u}\right)}}$$
设$$$v=1 - u^{2}$$$。
则$$$dv=\left(1 - u^{2}\right)^{\prime }du = - 2 u du$$$ (步骤见»),并有$$$u du = - \frac{dv}{2}$$$。
积分变为
$$z \left(u \operatorname{asin}{\left(u \right)} - {\color{red}{\int{\frac{u}{\sqrt{1 - u^{2}}} d u}}}\right) = z \left(u \operatorname{asin}{\left(u \right)} - {\color{red}{\int{\left(- \frac{1}{2 \sqrt{v}}\right)d v}}}\right)$$
对 $$$c=- \frac{1}{2}$$$ 和 $$$f{\left(v \right)} = \frac{1}{\sqrt{v}}$$$ 应用常数倍法则 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$:
$$z \left(u \operatorname{asin}{\left(u \right)} - {\color{red}{\int{\left(- \frac{1}{2 \sqrt{v}}\right)d v}}}\right) = z \left(u \operatorname{asin}{\left(u \right)} - {\color{red}{\left(- \frac{\int{\frac{1}{\sqrt{v}} d v}}{2}\right)}}\right)$$
应用幂法则 $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=- \frac{1}{2}$$$:
$$z \left(u \operatorname{asin}{\left(u \right)} + \frac{{\color{red}{\int{\frac{1}{\sqrt{v}} d v}}}}{2}\right)=z \left(u \operatorname{asin}{\left(u \right)} + \frac{{\color{red}{\int{v^{- \frac{1}{2}} d v}}}}{2}\right)=z \left(u \operatorname{asin}{\left(u \right)} + \frac{{\color{red}{\frac{v^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}\right)=z \left(u \operatorname{asin}{\left(u \right)} + \frac{{\color{red}{\left(2 v^{\frac{1}{2}}\right)}}}{2}\right)=z \left(u \operatorname{asin}{\left(u \right)} + \frac{{\color{red}{\left(2 \sqrt{v}\right)}}}{2}\right)$$
回忆一下 $$$v=1 - u^{2}$$$:
$$z \left(u \operatorname{asin}{\left(u \right)} + \sqrt{{\color{red}{v}}}\right) = z \left(u \operatorname{asin}{\left(u \right)} + \sqrt{{\color{red}{\left(1 - u^{2}\right)}}}\right)$$
回忆一下 $$$u=\ln{\left(x \right)}$$$:
$$z \left(\sqrt{1 - {\color{red}{u}}^{2}} + {\color{red}{u}} \operatorname{asin}{\left({\color{red}{u}} \right)}\right) = z \left(\sqrt{1 - {\color{red}{\ln{\left(x \right)}}}^{2}} + {\color{red}{\ln{\left(x \right)}}} \operatorname{asin}{\left({\color{red}{\ln{\left(x \right)}}} \right)}\right)$$
因此,
$$\int{\frac{z \operatorname{asin}{\left(\ln{\left(x \right)} \right)}}{x} d x} = z \left(\sqrt{1 - \ln{\left(x \right)}^{2}} + \ln{\left(x \right)} \operatorname{asin}{\left(\ln{\left(x \right)} \right)}\right)$$
加上积分常数:
$$\int{\frac{z \operatorname{asin}{\left(\ln{\left(x \right)} \right)}}{x} d x} = z \left(\sqrt{1 - \ln{\left(x \right)}^{2}} + \ln{\left(x \right)} \operatorname{asin}{\left(\ln{\left(x \right)} \right)}\right)+C$$
答案
$$$\int \frac{z \operatorname{asin}{\left(\ln\left(x\right) \right)}}{x}\, dx = z \left(\sqrt{1 - \ln^{2}\left(x\right)} + \ln\left(x\right) \operatorname{asin}{\left(\ln\left(x\right) \right)}\right) + C$$$A