$$$x y^{x}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int x y^{x}\, dx$$$。
解答
对于积分$$$\int{x y^{x} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=x$$$ 和 $$$\operatorname{dv}=y^{x} dx$$$。
则 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{y^{x} d x}=\frac{y^{x}}{\ln{\left(y \right)}}$$$ (步骤见 »)。
因此,
$${\color{red}{\int{x y^{x} d x}}}={\color{red}{\left(x \cdot \frac{y^{x}}{\ln{\left(y \right)}}-\int{\frac{y^{x}}{\ln{\left(y \right)}} \cdot 1 d x}\right)}}={\color{red}{\left(\frac{x y^{x}}{\ln{\left(y \right)}} - \int{\frac{y^{x}}{\ln{\left(y \right)}} d x}\right)}}$$
对 $$$c=\frac{1}{\ln{\left(y \right)}}$$$ 和 $$$f{\left(x \right)} = y^{x}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{x y^{x}}{\ln{\left(y \right)}} - {\color{red}{\int{\frac{y^{x}}{\ln{\left(y \right)}} d x}}} = \frac{x y^{x}}{\ln{\left(y \right)}} - {\color{red}{\frac{\int{y^{x} d x}}{\ln{\left(y \right)}}}}$$
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=y$$$:
$$\frac{x y^{x}}{\ln{\left(y \right)}} - \frac{{\color{red}{\int{y^{x} d x}}}}{\ln{\left(y \right)}} = \frac{x y^{x}}{\ln{\left(y \right)}} - \frac{{\color{red}{\frac{y^{x}}{\ln{\left(y \right)}}}}}{\ln{\left(y \right)}}$$
因此,
$$\int{x y^{x} d x} = \frac{x y^{x}}{\ln{\left(y \right)}} - \frac{y^{x}}{\ln{\left(y \right)}^{2}}$$
化简:
$$\int{x y^{x} d x} = \frac{y^{x} \left(x \ln{\left(y \right)} - 1\right)}{\ln{\left(y \right)}^{2}}$$
加上积分常数:
$$\int{x y^{x} d x} = \frac{y^{x} \left(x \ln{\left(y \right)} - 1\right)}{\ln{\left(y \right)}^{2}}+C$$
答案
$$$\int x y^{x}\, dx = \frac{y^{x} \left(x \ln\left(y\right) - 1\right)}{\ln^{2}\left(y\right)} + C$$$A