$$$- x + \sqrt{2} x$$$ 的积分
您的输入
求$$$\int \left(- x + \sqrt{2} x\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(- x + \sqrt{2} x\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{\sqrt{2} x d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$\int{\sqrt{2} x d x} - {\color{red}{\int{x d x}}}=\int{\sqrt{2} x d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\sqrt{2} x d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
对 $$$c=\sqrt{2}$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- \frac{x^{2}}{2} + {\color{red}{\int{\sqrt{2} x d x}}} = - \frac{x^{2}}{2} + {\color{red}{\sqrt{2} \int{x d x}}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$- \frac{x^{2}}{2} + \sqrt{2} {\color{red}{\int{x d x}}}=- \frac{x^{2}}{2} + \sqrt{2} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \frac{x^{2}}{2} + \sqrt{2} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
因此,
$$\int{\left(- x + \sqrt{2} x\right)d x} = - \frac{x^{2}}{2} + \frac{\sqrt{2} x^{2}}{2}$$
化简:
$$\int{\left(- x + \sqrt{2} x\right)d x} = \frac{x^{2} \left(-1 + \sqrt{2}\right)}{2}$$
加上积分常数:
$$\int{\left(- x + \sqrt{2} x\right)d x} = \frac{x^{2} \left(-1 + \sqrt{2}\right)}{2}+C$$
答案
$$$\int \left(- x + \sqrt{2} x\right)\, dx = \frac{x^{2} \left(-1 + \sqrt{2}\right)}{2} + C$$$A