$$$\frac{3 x^{3}}{4} - x$$$ 的积分

该计算器将求出$$$\frac{3 x^{3}}{4} - x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(\frac{3 x^{3}}{4} - x\right)\, dx$$$

解答

逐项积分:

$${\color{red}{\int{\left(\frac{3 x^{3}}{4} - x\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{\frac{3 x^{3}}{4} d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$\int{\frac{3 x^{3}}{4} d x} - {\color{red}{\int{x d x}}}=\int{\frac{3 x^{3}}{4} d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\frac{3 x^{3}}{4} d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

$$$c=\frac{3}{4}$$$$$$f{\left(x \right)} = x^{3}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \frac{x^{2}}{2} + {\color{red}{\int{\frac{3 x^{3}}{4} d x}}} = - \frac{x^{2}}{2} + {\color{red}{\left(\frac{3 \int{x^{3} d x}}{4}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=3$$$

$$- \frac{x^{2}}{2} + \frac{3 {\color{red}{\int{x^{3} d x}}}}{4}=- \frac{x^{2}}{2} + \frac{3 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}}{4}=- \frac{x^{2}}{2} + \frac{3 {\color{red}{\left(\frac{x^{4}}{4}\right)}}}{4}$$

因此,

$$\int{\left(\frac{3 x^{3}}{4} - x\right)d x} = \frac{3 x^{4}}{16} - \frac{x^{2}}{2}$$

化简:

$$\int{\left(\frac{3 x^{3}}{4} - x\right)d x} = \frac{x^{2} \left(3 x^{2} - 8\right)}{16}$$

加上积分常数:

$$\int{\left(\frac{3 x^{3}}{4} - x\right)d x} = \frac{x^{2} \left(3 x^{2} - 8\right)}{16}+C$$

答案

$$$\int \left(\frac{3 x^{3}}{4} - x\right)\, dx = \frac{x^{2} \left(3 x^{2} - 8\right)}{16} + C$$$A


Please try a new game Rotatly