$$$_1 x^{11}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int _1 x^{11}\, dx$$$。
解答
对 $$$c=_1$$$ 和 $$$f{\left(x \right)} = x^{11}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{_1 x^{11} d x}}} = {\color{red}{_1 \int{x^{11} d x}}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=11$$$:
$$_1 {\color{red}{\int{x^{11} d x}}}=_1 {\color{red}{\frac{x^{1 + 11}}{1 + 11}}}=_1 {\color{red}{\left(\frac{x^{12}}{12}\right)}}$$
因此,
$$\int{_1 x^{11} d x} = \frac{_1 x^{12}}{12}$$
加上积分常数:
$$\int{_1 x^{11} d x} = \frac{_1 x^{12}}{12}+C$$
答案
$$$\int _1 x^{11}\, dx = \frac{_1 x^{12}}{12} + C$$$A
Please try a new game Rotatly