$$$\frac{x^{3}}{2 \left(25 - x^{2}\right)}$$$ 的积分

该计算器将求出$$$\frac{x^{3}}{2 \left(25 - x^{2}\right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{x^{3}}{2 \left(25 - x^{2}\right)}\, dx$$$

解答

$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \frac{x^{3}}{25 - x^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{x^{3}}{2 \left(25 - x^{2}\right)} d x}}} = {\color{red}{\left(\frac{\int{\frac{x^{3}}{25 - x^{2}} d x}}{2}\right)}}$$

由于分子次数不小于分母次数,进行多项式长除法(步骤见»):

$$\frac{{\color{red}{\int{\frac{x^{3}}{25 - x^{2}} d x}}}}{2} = \frac{{\color{red}{\int{\left(- x + \frac{25 x}{25 - x^{2}}\right)d x}}}}{2}$$

逐项积分:

$$\frac{{\color{red}{\int{\left(- x + \frac{25 x}{25 - x^{2}}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{x d x} + \int{\frac{25 x}{25 - x^{2}} d x}\right)}}}{2}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$\frac{\int{\frac{25 x}{25 - x^{2}} d x}}{2} - \frac{{\color{red}{\int{x d x}}}}{2}=\frac{\int{\frac{25 x}{25 - x^{2}} d x}}{2} - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}=\frac{\int{\frac{25 x}{25 - x^{2}} d x}}{2} - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}$$

$$$u=25 - x^{2}$$$

$$$du=\left(25 - x^{2}\right)^{\prime }dx = - 2 x dx$$$ (步骤见»),并有$$$x dx = - \frac{du}{2}$$$

因此,

$$- \frac{x^{2}}{4} + \frac{{\color{red}{\int{\frac{25 x}{25 - x^{2}} d x}}}}{2} = - \frac{x^{2}}{4} + \frac{{\color{red}{\int{\left(- \frac{25}{2 u}\right)d u}}}}{2}$$

$$$c=- \frac{25}{2}$$$$$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- \frac{x^{2}}{4} + \frac{{\color{red}{\int{\left(- \frac{25}{2 u}\right)d u}}}}{2} = - \frac{x^{2}}{4} + \frac{{\color{red}{\left(- \frac{25 \int{\frac{1}{u} d u}}{2}\right)}}}{2}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{x^{2}}{4} - \frac{25 {\color{red}{\int{\frac{1}{u} d u}}}}{4} = - \frac{x^{2}}{4} - \frac{25 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$

回忆一下 $$$u=25 - x^{2}$$$:

$$- \frac{x^{2}}{4} - \frac{25 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} = - \frac{x^{2}}{4} - \frac{25 \ln{\left(\left|{{\color{red}{\left(25 - x^{2}\right)}}}\right| \right)}}{4}$$

因此,

$$\int{\frac{x^{3}}{2 \left(25 - x^{2}\right)} d x} = - \frac{x^{2}}{4} - \frac{25 \ln{\left(\left|{x^{2} - 25}\right| \right)}}{4}$$

加上积分常数:

$$\int{\frac{x^{3}}{2 \left(25 - x^{2}\right)} d x} = - \frac{x^{2}}{4} - \frac{25 \ln{\left(\left|{x^{2} - 25}\right| \right)}}{4}+C$$

答案

$$$\int \frac{x^{3}}{2 \left(25 - x^{2}\right)}\, dx = \left(- \frac{x^{2}}{4} - \frac{25 \ln\left(\left|{x^{2} - 25}\right|\right)}{4}\right) + C$$$A


Please try a new game Rotatly