$$$x^{2} \left(x^{3} - 1\right)^{10}$$$ 的积分
您的输入
求$$$\int x^{2} \left(x^{3} - 1\right)^{10}\, dx$$$。
解答
设$$$u=x^{3} - 1$$$。
则$$$du=\left(x^{3} - 1\right)^{\prime }dx = 3 x^{2} dx$$$ (步骤见»),并有$$$x^{2} dx = \frac{du}{3}$$$。
积分变为
$${\color{red}{\int{x^{2} \left(x^{3} - 1\right)^{10} d x}}} = {\color{red}{\int{\frac{u^{10}}{3} d u}}}$$
对 $$$c=\frac{1}{3}$$$ 和 $$$f{\left(u \right)} = u^{10}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{u^{10}}{3} d u}}} = {\color{red}{\left(\frac{\int{u^{10} d u}}{3}\right)}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=10$$$:
$$\frac{{\color{red}{\int{u^{10} d u}}}}{3}=\frac{{\color{red}{\frac{u^{1 + 10}}{1 + 10}}}}{3}=\frac{{\color{red}{\left(\frac{u^{11}}{11}\right)}}}{3}$$
回忆一下 $$$u=x^{3} - 1$$$:
$$\frac{{\color{red}{u}}^{11}}{33} = \frac{{\color{red}{\left(x^{3} - 1\right)}}^{11}}{33}$$
因此,
$$\int{x^{2} \left(x^{3} - 1\right)^{10} d x} = \frac{\left(x^{3} - 1\right)^{11}}{33}$$
加上积分常数:
$$\int{x^{2} \left(x^{3} - 1\right)^{10} d x} = \frac{\left(x^{3} - 1\right)^{11}}{33}+C$$
答案
$$$\int x^{2} \left(x^{3} - 1\right)^{10}\, dx = \frac{\left(x^{3} - 1\right)^{11}}{33} + C$$$A