$$$x^{2} \left(4 - x^{2}\right)$$$ 的积分
您的输入
求$$$\int x^{2} \left(4 - x^{2}\right)\, dx$$$。
解答
Expand the expression:
$${\color{red}{\int{x^{2} \left(4 - x^{2}\right) d x}}} = {\color{red}{\int{\left(- x^{4} + 4 x^{2}\right)d x}}}$$
逐项积分:
$${\color{red}{\int{\left(- x^{4} + 4 x^{2}\right)d x}}} = {\color{red}{\left(\int{4 x^{2} d x} - \int{x^{4} d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=4$$$:
$$\int{4 x^{2} d x} - {\color{red}{\int{x^{4} d x}}}=\int{4 x^{2} d x} - {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=\int{4 x^{2} d x} - {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$
对 $$$c=4$$$ 和 $$$f{\left(x \right)} = x^{2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- \frac{x^{5}}{5} + {\color{red}{\int{4 x^{2} d x}}} = - \frac{x^{5}}{5} + {\color{red}{\left(4 \int{x^{2} d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$:
$$- \frac{x^{5}}{5} + 4 {\color{red}{\int{x^{2} d x}}}=- \frac{x^{5}}{5} + 4 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \frac{x^{5}}{5} + 4 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
因此,
$$\int{x^{2} \left(4 - x^{2}\right) d x} = - \frac{x^{5}}{5} + \frac{4 x^{3}}{3}$$
化简:
$$\int{x^{2} \left(4 - x^{2}\right) d x} = \frac{x^{3} \left(20 - 3 x^{2}\right)}{15}$$
加上积分常数:
$$\int{x^{2} \left(4 - x^{2}\right) d x} = \frac{x^{3} \left(20 - 3 x^{2}\right)}{15}+C$$
答案
$$$\int x^{2} \left(4 - x^{2}\right)\, dx = \frac{x^{3} \left(20 - 3 x^{2}\right)}{15} + C$$$A