$$$\frac{x}{k - x^{2}}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \frac{x}{k - x^{2}}\, dx$$$。
解答
设$$$u=k - x^{2}$$$。
则$$$du=\left(k - x^{2}\right)^{\prime }dx = - 2 x dx$$$ (步骤见»),并有$$$x dx = - \frac{du}{2}$$$。
该积分可以改写为
$${\color{red}{\int{\frac{x}{k - x^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 u}\right)d u}}}$$
对 $$$c=- \frac{1}{2}$$$ 和 $$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\left(- \frac{1}{2 u}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u} d u}}{2}\right)}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
回忆一下 $$$u=k - x^{2}$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\left(k - x^{2}\right)}}}\right| \right)}}{2}$$
因此,
$$\int{\frac{x}{k - x^{2}} d x} = - \frac{\ln{\left(\left|{k - x^{2}}\right| \right)}}{2}$$
加上积分常数:
$$\int{\frac{x}{k - x^{2}} d x} = - \frac{\ln{\left(\left|{k - x^{2}}\right| \right)}}{2}+C$$
答案
$$$\int \frac{x}{k - x^{2}}\, dx = - \frac{\ln\left(\left|{k - x^{2}}\right|\right)}{2} + C$$$A