$$$x^{2} e^{4}$$$ 的积分
您的输入
求$$$\int x^{2} e^{4}\, dx$$$。
解答
对 $$$c=e^{4}$$$ 和 $$$f{\left(x \right)} = x^{2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{x^{2} e^{4} d x}}} = {\color{red}{e^{4} \int{x^{2} d x}}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$:
$$e^{4} {\color{red}{\int{x^{2} d x}}}=e^{4} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=e^{4} {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
因此,
$$\int{x^{2} e^{4} d x} = \frac{x^{3} e^{4}}{3}$$
加上积分常数:
$$\int{x^{2} e^{4} d x} = \frac{x^{3} e^{4}}{3}+C$$
答案
$$$\int x^{2} e^{4}\, dx = \frac{x^{3} e^{4}}{3} + C$$$A
Please try a new game Rotatly