$$$\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}$$$ 的积分

该计算器将求出$$$\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$$

解答

改写被积函数:

$${\color{red}{\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}}$$

$$$u=\sec{\left(x \right)}$$$

$$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (步骤见»),并有$$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$

因此,

$${\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\int{1 d u}}}$$

应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$

$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$

回忆一下 $$$u=\sec{\left(x \right)}$$$:

$${\color{red}{u}} = {\color{red}{\sec{\left(x \right)}}}$$

因此,

$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}$$

加上积分常数:

$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}+C$$

答案

$$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx = \sec{\left(x \right)} + C$$$A


Please try a new game Rotatly