$$$\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}$$$ 的积分
您的输入
求$$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$$。
解答
改写被积函数:
$${\color{red}{\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}}$$
设$$$u=\sec{\left(x \right)}$$$。
则$$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (步骤见»),并有$$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$。
因此,
$${\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\int{1 d u}}}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$
回忆一下 $$$u=\sec{\left(x \right)}$$$:
$${\color{red}{u}} = {\color{red}{\sec{\left(x \right)}}}$$
因此,
$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}$$
加上积分常数:
$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}+C$$
答案
$$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx = \sec{\left(x \right)} + C$$$A