$$$\tan^{2}{\left(x \right)}$$$ 的积分
您的输入
求$$$\int \tan^{2}{\left(x \right)}\, dx$$$。
解答
设$$$u=\tan{\left(x \right)}$$$。
则 $$$x=\operatorname{atan}{\left(u \right)}$$$ 且 $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$(步骤见»)。
该积分可以改写为
$${\color{red}{\int{\tan^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}$$
改写并拆分该分式:
$${\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
逐项积分:
$${\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$$- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{1 d u}}} = - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{u}}$$
$$$\frac{1}{u^{2} + 1}$$$ 的积分为 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$u - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = u - {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
回忆一下 $$$u=\tan{\left(x \right)}$$$:
$$- \operatorname{atan}{\left({\color{red}{u}} \right)} + {\color{red}{u}} = - \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)} + {\color{red}{\tan{\left(x \right)}}}$$
因此,
$$\int{\tan^{2}{\left(x \right)} d x} = \tan{\left(x \right)} - \operatorname{atan}{\left(\tan{\left(x \right)} \right)}$$
化简:
$$\int{\tan^{2}{\left(x \right)} d x} = - x + \tan{\left(x \right)}$$
加上积分常数:
$$\int{\tan^{2}{\left(x \right)} d x} = - x + \tan{\left(x \right)}+C$$
答案
$$$\int \tan^{2}{\left(x \right)}\, dx = \left(- x + \tan{\left(x \right)}\right) + C$$$A