$$$\csc^{2}{\left(x \right)} + 1$$$ 的积分
您的输入
求$$$\int \left(\csc^{2}{\left(x \right)} + 1\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(\csc^{2}{\left(x \right)} + 1\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\csc^{2}{\left(x \right)} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$:
$$\int{\csc^{2}{\left(x \right)} d x} + {\color{red}{\int{1 d x}}} = \int{\csc^{2}{\left(x \right)} d x} + {\color{red}{x}}$$
$$$\csc^{2}{\left(x \right)}$$$ 的积分为 $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$:
$$x + {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}} = x + {\color{red}{\left(- \cot{\left(x \right)}\right)}}$$
因此,
$$\int{\left(\csc^{2}{\left(x \right)} + 1\right)d x} = x - \cot{\left(x \right)}$$
加上积分常数:
$$\int{\left(\csc^{2}{\left(x \right)} + 1\right)d x} = x - \cot{\left(x \right)}+C$$
答案
$$$\int \left(\csc^{2}{\left(x \right)} + 1\right)\, dx = \left(x - \cot{\left(x \right)}\right) + C$$$A