$$$\sqrt{6} \left(4 x^{7} + 1\right)$$$ 的积分

该计算器将求出$$$\sqrt{6} \left(4 x^{7} + 1\right)$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \sqrt{6} \left(4 x^{7} + 1\right)\, dx$$$

解答

$$$c=\sqrt{6}$$$$$$f{\left(x \right)} = 4 x^{7} + 1$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\sqrt{6} \left(4 x^{7} + 1\right) d x}}} = {\color{red}{\sqrt{6} \int{\left(4 x^{7} + 1\right)d x}}}$$

逐项积分:

$$\sqrt{6} {\color{red}{\int{\left(4 x^{7} + 1\right)d x}}} = \sqrt{6} {\color{red}{\left(\int{1 d x} + \int{4 x^{7} d x}\right)}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$

$$\sqrt{6} \left(\int{4 x^{7} d x} + {\color{red}{\int{1 d x}}}\right) = \sqrt{6} \left(\int{4 x^{7} d x} + {\color{red}{x}}\right)$$

$$$c=4$$$$$$f{\left(x \right)} = x^{7}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\sqrt{6} \left(x + {\color{red}{\int{4 x^{7} d x}}}\right) = \sqrt{6} \left(x + {\color{red}{\left(4 \int{x^{7} d x}\right)}}\right)$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=7$$$

$$\sqrt{6} \left(x + 4 {\color{red}{\int{x^{7} d x}}}\right)=\sqrt{6} \left(x + 4 {\color{red}{\frac{x^{1 + 7}}{1 + 7}}}\right)=\sqrt{6} \left(x + 4 {\color{red}{\left(\frac{x^{8}}{8}\right)}}\right)$$

因此,

$$\int{\sqrt{6} \left(4 x^{7} + 1\right) d x} = \sqrt{6} \left(\frac{x^{8}}{2} + x\right)$$

化简:

$$\int{\sqrt{6} \left(4 x^{7} + 1\right) d x} = \frac{\sqrt{6} x \left(x^{7} + 2\right)}{2}$$

加上积分常数:

$$\int{\sqrt{6} \left(4 x^{7} + 1\right) d x} = \frac{\sqrt{6} x \left(x^{7} + 2\right)}{2}+C$$

答案

$$$\int \sqrt{6} \left(4 x^{7} + 1\right)\, dx = \frac{\sqrt{6} x \left(x^{7} + 2\right)}{2} + C$$$A


Please try a new game Rotatly