$$$\sqrt{a - x^{2}}$$$ 关于$$$x$$$的积分

该计算器将求出$$$\sqrt{a - x^{2}}$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \sqrt{a - x^{2}}\, dx$$$

解答

$$$x=\sqrt{a} \sin{\left(u \right)}$$$

$$$dx=\left(\sqrt{a} \sin{\left(u \right)}\right)^{\prime }du = \sqrt{a} \cos{\left(u \right)} du$$$(步骤见»)。

此外,可得$$$u=\operatorname{asin}{\left(\frac{x}{\sqrt{a}} \right)}$$$

因此,

$$$\sqrt{a - x^{2}} = \sqrt{- a \sin^{2}{\left( u \right)} + a}$$$

利用恒等式 $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$

$$$\sqrt{- a \sin^{2}{\left( u \right)} + a}=\sqrt{a} \sqrt{1 - \sin^{2}{\left( u \right)}}=\sqrt{a} \sqrt{\cos^{2}{\left( u \right)}}$$$

假设$$$\cos{\left( u \right)} \ge 0$$$,我们得到如下结果:

$$$\sqrt{a} \sqrt{\cos^{2}{\left( u \right)}} = \sqrt{a} \cos{\left( u \right)}$$$

因此,

$${\color{red}{\int{\sqrt{a - x^{2}} d x}}} = {\color{red}{\int{a \cos^{2}{\left(u \right)} d u}}}$$

应用降幂公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$,并令 $$$\alpha= u $$$:

$${\color{red}{\int{a \cos^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\frac{a \left(\cos{\left(2 u \right)} + 1\right)}{2} d u}}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = a \left(\cos{\left(2 u \right)} + 1\right)$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\frac{a \left(\cos{\left(2 u \right)} + 1\right)}{2} d u}}} = {\color{red}{\left(\frac{\int{a \left(\cos{\left(2 u \right)} + 1\right) d u}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{a \left(\cos{\left(2 u \right)} + 1\right) d u}}}}{2} = \frac{{\color{red}{\int{\left(a \cos{\left(2 u \right)} + a\right)d u}}}}{2}$$

逐项积分:

$$\frac{{\color{red}{\int{\left(a \cos{\left(2 u \right)} + a\right)d u}}}}{2} = \frac{{\color{red}{\left(\int{a d u} + \int{a \cos{\left(2 u \right)} d u}\right)}}}{2}$$

应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=a$$$

$$\frac{\int{a \cos{\left(2 u \right)} d u}}{2} + \frac{{\color{red}{\int{a d u}}}}{2} = \frac{\int{a \cos{\left(2 u \right)} d u}}{2} + \frac{{\color{red}{a u}}}{2}$$

$$$c=a$$$$$$f{\left(u \right)} = \cos{\left(2 u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$\frac{a u}{2} + \frac{{\color{red}{\int{a \cos{\left(2 u \right)} d u}}}}{2} = \frac{a u}{2} + \frac{{\color{red}{a \int{\cos{\left(2 u \right)} d u}}}}{2}$$

$$$v=2 u$$$

$$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (步骤见»),并有$$$du = \frac{dv}{2}$$$

因此,

$$\frac{a u}{2} + \frac{a {\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{2} = \frac{a u}{2} + \frac{a {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2}$$

$$$c=\frac{1}{2}$$$$$$f{\left(v \right)} = \cos{\left(v \right)}$$$ 应用常数倍法则 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$

$$\frac{a u}{2} + \frac{a {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2} = \frac{a u}{2} + \frac{a {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{2}$$

余弦函数的积分为 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$

$$\frac{a u}{2} + \frac{a {\color{red}{\int{\cos{\left(v \right)} d v}}}}{4} = \frac{a u}{2} + \frac{a {\color{red}{\sin{\left(v \right)}}}}{4}$$

回忆一下 $$$v=2 u$$$:

$$\frac{a u}{2} + \frac{a \sin{\left({\color{red}{v}} \right)}}{4} = \frac{a u}{2} + \frac{a \sin{\left({\color{red}{\left(2 u\right)}} \right)}}{4}$$

回忆一下 $$$u=\operatorname{asin}{\left(\frac{x}{\sqrt{a}} \right)}$$$:

$$\frac{a \sin{\left(2 {\color{red}{u}} \right)}}{4} + \frac{a {\color{red}{u}}}{2} = \frac{a \sin{\left(2 {\color{red}{\operatorname{asin}{\left(\frac{x}{\sqrt{a}} \right)}}} \right)}}{4} + \frac{a {\color{red}{\operatorname{asin}{\left(\frac{x}{\sqrt{a}} \right)}}}}{2}$$

因此,

$$\int{\sqrt{a - x^{2}} d x} = \frac{a \sin{\left(2 \operatorname{asin}{\left(\frac{x}{\sqrt{a}} \right)} \right)}}{4} + \frac{a \operatorname{asin}{\left(\frac{x}{\sqrt{a}} \right)}}{2}$$

使用公式 $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$,化简该表达式:

$$\int{\sqrt{a - x^{2}} d x} = \frac{\sqrt{a} x \sqrt{1 - \frac{x^{2}}{a}}}{2} + \frac{a \operatorname{asin}{\left(\frac{x}{\sqrt{a}} \right)}}{2}$$

进一步化简:

$$\int{\sqrt{a - x^{2}} d x} = \frac{\sqrt{a} x \sqrt{\frac{a - x^{2}}{a}}}{2} + \frac{a \operatorname{asin}{\left(\frac{x}{\sqrt{a}} \right)}}{2}$$

加上积分常数:

$$\int{\sqrt{a - x^{2}} d x} = \frac{\sqrt{a} x \sqrt{\frac{a - x^{2}}{a}}}{2} + \frac{a \operatorname{asin}{\left(\frac{x}{\sqrt{a}} \right)}}{2}+C$$

答案

$$$\int \sqrt{a - x^{2}}\, dx = \left(\frac{\sqrt{a} x \sqrt{\frac{a - x^{2}}{a}}}{2} + \frac{a \operatorname{asin}{\left(\frac{x}{\sqrt{a}} \right)}}{2}\right) + C$$$A


Please try a new game Rotatly