$$$\frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916}$$$ 的积分

该计算器将求出$$$\frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916}\, dx$$$

解答

使用公式 $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$,取 $$$\alpha=x$$$$$$\beta=2 x$$$,将 $$$\sin\left(x \right)\sin\left(2 x \right)$$$ 重写:

$${\color{red}{\int{\frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916} d x}}} = {\color{red}{\int{\frac{\left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{2}\right) \cos{\left(x \right)}}{916} d x}}}$$

展开该表达式:

$${\color{red}{\int{\frac{\left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{2}\right) \cos{\left(x \right)}}{916} d x}}} = {\color{red}{\int{\left(\frac{\cos^{2}{\left(x \right)}}{1832} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{1832}\right)d x}}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \frac{\cos^{2}{\left(x \right)}}{916} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\left(\frac{\cos^{2}{\left(x \right)}}{1832} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{1832}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\frac{\cos^{2}{\left(x \right)}}{916} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916}\right)d x}}{2}\right)}}$$

逐项积分:

$$\frac{{\color{red}{\int{\left(\frac{\cos^{2}{\left(x \right)}}{916} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x} + \int{\frac{\cos^{2}{\left(x \right)}}{916} d x}\right)}}}{2}$$

$$$c=\frac{1}{916}$$$$$$f{\left(x \right)} = \cos^{2}{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{916} d x}}}}{2} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\cos^{2}{\left(x \right)} d x}}{916}\right)}}}{2}$$

应用降幂公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$,并令 $$$\alpha=x$$$:

$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\cos^{2}{\left(x \right)} d x}}}}{1832} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}}{1832}$$

$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \cos{\left(2 x \right)} + 1$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}}{1832} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}{2}\right)}}}{1832}$$

逐项积分:

$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}}}{3664} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\left(\int{1 d x} + \int{\cos{\left(2 x \right)} d x}\right)}}}{3664}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$

$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{\int{\cos{\left(2 x \right)} d x}}{3664} + \frac{{\color{red}{\int{1 d x}}}}{3664} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{\int{\cos{\left(2 x \right)} d x}}{3664} + \frac{{\color{red}{x}}}{3664}$$

$$$u=2 x$$$

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$

因此,

$$\frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{3664} = \frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{3664}$$

$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$\frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{3664} = \frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{3664}$$

余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$

$$\frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{7328} = \frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{7328}$$

回忆一下 $$$u=2 x$$$:

$$\frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{7328} = \frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{7328}$$

使用公式 $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$,取 $$$\alpha=x$$$$$$\beta=3 x$$$,将 $$$\cos\left(x \right)\cos\left(3 x \right)$$$ 重写:

$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}}}{2} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{1832} + \frac{\cos{\left(4 x \right)}}{1832}\right)d x}}}}{2}$$

$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \frac{\cos{\left(2 x \right)}}{916} + \frac{\cos{\left(4 x \right)}}{916}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{1832} + \frac{\cos{\left(4 x \right)}}{1832}\right)d x}}}}{2} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\left(\frac{\int{\left(\frac{\cos{\left(2 x \right)}}{916} + \frac{\cos{\left(4 x \right)}}{916}\right)d x}}{2}\right)}}}{2}$$

逐项积分:

$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{916} + \frac{\cos{\left(4 x \right)}}{916}\right)d x}}}}{4} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\left(\int{\frac{\cos{\left(2 x \right)}}{916} d x} + \int{\frac{\cos{\left(4 x \right)}}{916} d x}\right)}}}{4}$$

$$$c=\frac{1}{916}$$$$$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}{4} - \frac{{\color{red}{\int{\frac{\cos{\left(2 x \right)}}{916} d x}}}}{4} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}{4} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(2 x \right)} d x}}{916}\right)}}}{4}$$

积分 $$$\int{\cos{\left(2 x \right)} d x}$$$ 已经计算过:

$$\int{\cos{\left(2 x \right)} d x} = \frac{\sin{\left(2 x \right)}}{2}$$

因此,

$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}{4} - \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{3664} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}{4} - \frac{{\color{red}{\left(\frac{\sin{\left(2 x \right)}}{2}\right)}}}{3664}$$

$$$c=\frac{1}{916}$$$$$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\frac{x}{3664} - \frac{{\color{red}{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}}}{4} = \frac{x}{3664} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(4 x \right)} d x}}{916}\right)}}}{4}$$

$$$v=4 x$$$

$$$dv=\left(4 x\right)^{\prime }dx = 4 dx$$$ (步骤见»),并有$$$dx = \frac{dv}{4}$$$

所以,

$$\frac{x}{3664} - \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{3664} = \frac{x}{3664} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{3664}$$

$$$c=\frac{1}{4}$$$$$$f{\left(v \right)} = \cos{\left(v \right)}$$$ 应用常数倍法则 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$

$$\frac{x}{3664} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{3664} = \frac{x}{3664} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{4}\right)}}}{3664}$$

余弦函数的积分为 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$

$$\frac{x}{3664} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{14656} = \frac{x}{3664} - \frac{{\color{red}{\sin{\left(v \right)}}}}{14656}$$

回忆一下 $$$v=4 x$$$:

$$\frac{x}{3664} - \frac{\sin{\left({\color{red}{v}} \right)}}{14656} = \frac{x}{3664} - \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{14656}$$

因此,

$$\int{\frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916} d x} = \frac{x}{3664} - \frac{\sin{\left(4 x \right)}}{14656}$$

加上积分常数:

$$\int{\frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916} d x} = \frac{x}{3664} - \frac{\sin{\left(4 x \right)}}{14656}+C$$

答案

$$$\int \frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916}\, dx = \left(\frac{x}{3664} - \frac{\sin{\left(4 x \right)}}{14656}\right) + C$$$A


Please try a new game Rotatly