$$$\sin{\left(x \right)} \cos{\left(2 \right)} \cos{\left(x \right)}$$$ 的积分

该计算器将求出$$$\sin{\left(x \right)} \cos{\left(2 \right)} \cos{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \sin{\left(x \right)} \cos{\left(2 \right)} \cos{\left(x \right)}\, dx$$$

三角函数的参数应以弧度表示。若要以角度输入参数,请将其乘以 pi/180,例如把 45° 写为 45*pi/180,或者使用带有 'd' 的相应函数,例如把 sin(45°) 写为 sind(45)。

解答

$$$c=\cos{\left(2 \right)}$$$$$$f{\left(x \right)} = \sin{\left(x \right)} \cos{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\sin{\left(x \right)} \cos{\left(2 \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\cos{\left(2 \right)} \int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}}$$

$$$u=\sin{\left(x \right)}$$$

$$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (步骤见»),并有$$$\cos{\left(x \right)} dx = du$$$

该积分可以改写为

$$\cos{\left(2 \right)} {\color{red}{\int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}} = \cos{\left(2 \right)} {\color{red}{\int{u d u}}}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$\cos{\left(2 \right)} {\color{red}{\int{u d u}}}=\cos{\left(2 \right)} {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=\cos{\left(2 \right)} {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$

回忆一下 $$$u=\sin{\left(x \right)}$$$:

$$\frac{\cos{\left(2 \right)} {\color{red}{u}}^{2}}{2} = \frac{\cos{\left(2 \right)} {\color{red}{\sin{\left(x \right)}}}^{2}}{2}$$

因此,

$$\int{\sin{\left(x \right)} \cos{\left(2 \right)} \cos{\left(x \right)} d x} = \frac{\sin^{2}{\left(x \right)} \cos{\left(2 \right)}}{2}$$

加上积分常数:

$$\int{\sin{\left(x \right)} \cos{\left(2 \right)} \cos{\left(x \right)} d x} = \frac{\sin^{2}{\left(x \right)} \cos{\left(2 \right)}}{2}+C$$

答案

$$$\int \sin{\left(x \right)} \cos{\left(2 \right)} \cos{\left(x \right)}\, dx = \frac{\sin^{2}{\left(x \right)} \cos{\left(2 \right)}}{2} + C$$$A


Please try a new game Rotatly