$$$\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}$$$ 关于$$$x$$$的积分
相关计算器: 定积分与广义积分计算器
您的输入
求$$$\int \frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}\, dx$$$。
解答
对 $$$c=\frac{1}{\sin{\left(\frac{\pi t}{4} \right)}}$$$ 和 $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} d x}}} = {\color{red}{\frac{\int{\sin{\left(x \right)} d x}}{\sin{\left(\frac{\pi t}{4} \right)}}}}$$
正弦函数的积分为 $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{\sin{\left(\frac{\pi t}{4} \right)}} = \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{\sin{\left(\frac{\pi t}{4} \right)}}$$
因此,
$$\int{\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} d x} = - \frac{\cos{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}$$
加上积分常数:
$$\int{\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} d x} = - \frac{\cos{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}+C$$
答案
$$$\int \frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}\, dx = - \frac{\cos{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} + C$$$A