$$$a^{2} b^{2} \sin^{2}{\left(2 x \right)}$$$ 关于$$$x$$$的积分

该计算器将求出$$$a^{2} b^{2} \sin^{2}{\left(2 x \right)}$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int a^{2} b^{2} \sin^{2}{\left(2 x \right)}\, dx$$$

解答

应用降幂公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$,并令 $$$\alpha=2 x$$$:

$${\color{red}{\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)}{2} d x}}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right) d x}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- a^{2} b^{2} \cos{\left(4 x \right)} + a^{2} b^{2}\right)d x}}}}{2}$$

逐项积分:

$$\frac{{\color{red}{\int{\left(- a^{2} b^{2} \cos{\left(4 x \right)} + a^{2} b^{2}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{a^{2} b^{2} d x} - \int{a^{2} b^{2} \cos{\left(4 x \right)} d x}\right)}}}{2}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=a^{2} b^{2}$$$

$$- \frac{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{a^{2} b^{2} d x}}}}{2} = - \frac{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{a^{2} b^{2} x}}}{2}$$

$$$c=a^{2} b^{2}$$$$$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\frac{a^{2} b^{2} x}{2} - \frac{{\color{red}{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{{\color{red}{a^{2} b^{2} \int{\cos{\left(4 x \right)} d x}}}}{2}$$

$$$u=4 x$$$

$$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (步骤见»),并有$$$dx = \frac{du}{4}$$$

该积分可以改写为

$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2}$$

$$$c=\frac{1}{4}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{2}$$

余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$

$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\cos{\left(u \right)} d u}}}}{8} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\sin{\left(u \right)}}}}{8}$$

回忆一下 $$$u=4 x$$$:

$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left({\color{red}{u}} \right)}}{8} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left({\color{red}{\left(4 x\right)}} \right)}}{8}$$

因此,

$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left(4 x \right)}}{8}$$

化简:

$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8}$$

加上积分常数:

$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8}+C$$

答案

$$$\int a^{2} b^{2} \sin^{2}{\left(2 x \right)}\, dx = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8} + C$$$A


Please try a new game Rotatly