$$$\sin^{2}{\left(x \right)} \sin{\left(2 x \right)}$$$ 的积分

该计算器将求出$$$\sin^{2}{\left(x \right)} \sin{\left(2 x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}\, dx$$$

解答

应用降幂公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$,并令 $$$\alpha=x$$$:

$${\color{red}{\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}}{2} d x}}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)} d x}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{2}$$

逐项积分:

$$\frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{\sin{\left(2 x \right)} \cos{\left(2 x \right)} d x} + \int{\sin{\left(2 x \right)} d x}\right)}}}{2}$$

$$$u=\sin{\left(2 x \right)}$$$

$$$du=\left(\sin{\left(2 x \right)}\right)^{\prime }dx = 2 \cos{\left(2 x \right)} dx$$$ (步骤见»),并有$$$\cos{\left(2 x \right)} dx = \frac{du}{2}$$$

因此,

$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} \cos{\left(2 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{u}{2} d u}}}}{2}$$

$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = u$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{u}{2} d u}}}}{2} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{u d u}}{2}\right)}}}{2}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{u d u}}}}{4}=\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{4}=\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{4}$$

回忆一下 $$$u=\sin{\left(2 x \right)}$$$:

$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{u}}^{2}}{8} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(2 x \right)}}}^{2}}{8}$$

$$$u=2 x$$$

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$

所以,

$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{2} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}$$

$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}$$

正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$

回忆一下 $$$u=2 x$$$:

$$- \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left({\color{red}{u}} \right)}}{4} = - \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$

因此,

$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = - \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left(2 x \right)}}{4}$$

化简:

$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = \frac{\sin^{4}{\left(x \right)}}{2} - \frac{1}{4}$$

加上积分常数(并从表达式中去除常数项):

$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = \frac{\sin^{4}{\left(x \right)}}{2}+C$$

答案

$$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}\, dx = \frac{\sin^{4}{\left(x \right)}}{2} + C$$$A


Please try a new game Rotatly