$$$- x \sin{\left(x \right)} \tan{\left(1 \right)}$$$ 的积分
您的输入
求$$$\int \left(- x \sin{\left(x \right)} \tan{\left(1 \right)}\right)\, dx$$$。
解答
对 $$$c=- \tan{\left(1 \right)}$$$ 和 $$$f{\left(x \right)} = x \sin{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\left(- x \sin{\left(x \right)} \tan{\left(1 \right)}\right)d x}}} = {\color{red}{\left(- \tan{\left(1 \right)} \int{x \sin{\left(x \right)} d x}\right)}}$$
对于积分$$$\int{x \sin{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=x$$$ 和 $$$\operatorname{dv}=\sin{\left(x \right)} dx$$$。
则 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\sin{\left(x \right)} d x}=- \cos{\left(x \right)}$$$ (步骤见 »)。
积分变为
$$- \tan{\left(1 \right)} {\color{red}{\int{x \sin{\left(x \right)} d x}}}=- \tan{\left(1 \right)} {\color{red}{\left(x \cdot \left(- \cos{\left(x \right)}\right)-\int{\left(- \cos{\left(x \right)}\right) \cdot 1 d x}\right)}}=- \tan{\left(1 \right)} {\color{red}{\left(- x \cos{\left(x \right)} - \int{\left(- \cos{\left(x \right)}\right)d x}\right)}}$$
对 $$$c=-1$$$ 和 $$$f{\left(x \right)} = \cos{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- \tan{\left(1 \right)} \left(- x \cos{\left(x \right)} - {\color{red}{\int{\left(- \cos{\left(x \right)}\right)d x}}}\right) = - \tan{\left(1 \right)} \left(- x \cos{\left(x \right)} - {\color{red}{\left(- \int{\cos{\left(x \right)} d x}\right)}}\right)$$
余弦函数的积分为 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$- \tan{\left(1 \right)} \left(- x \cos{\left(x \right)} + {\color{red}{\int{\cos{\left(x \right)} d x}}}\right) = - \tan{\left(1 \right)} \left(- x \cos{\left(x \right)} + {\color{red}{\sin{\left(x \right)}}}\right)$$
因此,
$$\int{\left(- x \sin{\left(x \right)} \tan{\left(1 \right)}\right)d x} = - \left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \tan{\left(1 \right)}$$
化简:
$$\int{\left(- x \sin{\left(x \right)} \tan{\left(1 \right)}\right)d x} = \left(x \cos{\left(x \right)} - \sin{\left(x \right)}\right) \tan{\left(1 \right)}$$
加上积分常数:
$$\int{\left(- x \sin{\left(x \right)} \tan{\left(1 \right)}\right)d x} = \left(x \cos{\left(x \right)} - \sin{\left(x \right)}\right) \tan{\left(1 \right)}+C$$
答案
$$$\int \left(- x \sin{\left(x \right)} \tan{\left(1 \right)}\right)\, dx = \left(x \cos{\left(x \right)} - \sin{\left(x \right)}\right) \tan{\left(1 \right)} + C$$$A