$$$\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}}$$$ 关于$$$\pi$$$的积分

该计算器将求出$$$\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}}$$$关于$$$\pi$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}}\, d\pi$$$

解答

$$$c=\sin^{2}{\left(z \right)}$$$$$$f{\left(\pi \right)} = \frac{1}{\left(- \frac{\pi}{6} + z\right)^{3}}$$$ 应用常数倍法则 $$$\int c f{\left(\pi \right)}\, d\pi = c \int f{\left(\pi \right)}\, d\pi$$$

$${\color{red}{\int{\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi}}} = {\color{red}{\sin^{2}{\left(z \right)} \int{\frac{1}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi}}}$$

$$$u=- \frac{\pi}{6} + z$$$

$$$du=\left(- \frac{\pi}{6} + z\right)^{\prime }d\pi = - \frac{d\pi}{6}$$$ (步骤见»),并有$$$d\pi = - 6 du$$$

所以,

$$\sin^{2}{\left(z \right)} {\color{red}{\int{\frac{1}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi}}} = \sin^{2}{\left(z \right)} {\color{red}{\int{\left(- \frac{6}{u^{3}}\right)d u}}}$$

$$$c=-6$$$$$$f{\left(u \right)} = \frac{1}{u^{3}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$\sin^{2}{\left(z \right)} {\color{red}{\int{\left(- \frac{6}{u^{3}}\right)d u}}} = \sin^{2}{\left(z \right)} {\color{red}{\left(- 6 \int{\frac{1}{u^{3}} d u}\right)}}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-3$$$

$$- 6 \sin^{2}{\left(z \right)} {\color{red}{\int{\frac{1}{u^{3}} d u}}}=- 6 \sin^{2}{\left(z \right)} {\color{red}{\int{u^{-3} d u}}}=- 6 \sin^{2}{\left(z \right)} {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=- 6 \sin^{2}{\left(z \right)} {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=- 6 \sin^{2}{\left(z \right)} {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$

回忆一下 $$$u=- \frac{\pi}{6} + z$$$:

$$3 \sin^{2}{\left(z \right)} {\color{red}{u}}^{-2} = 3 \sin^{2}{\left(z \right)} {\color{red}{\left(- \frac{\pi}{6} + z\right)}}^{-2}$$

因此,

$$\int{\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi} = \frac{3 \sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{2}}$$

化简:

$$\int{\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi} = \frac{108 \sin^{2}{\left(z \right)}}{\left(- \pi + 6 z\right)^{2}}$$

加上积分常数:

$$\int{\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi} = \frac{108 \sin^{2}{\left(z \right)}}{\left(- \pi + 6 z\right)^{2}}+C$$

答案

$$$\int \frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}}\, d\pi = \frac{108 \sin^{2}{\left(z \right)}}{\left(- \pi + 6 z\right)^{2}} + C$$$A


Please try a new game Rotatly