$$$- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}$$$ 的积分
相关计算器: 定积分与广义积分计算器
您的输入
求$$$\int \left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)\, dt$$$。
解答
逐项积分:
$${\color{red}{\int{\left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)d t}}} = {\color{red}{\left(\int{\sin^{2}{\left(t \right)} d t} - \int{\sin^{4}{\left(t \right)} d t}\right)}}$$
应用降幂公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$,并令 $$$\alpha=t$$$:
$$- \int{\sin^{4}{\left(t \right)} d t} + {\color{red}{\int{\sin^{2}{\left(t \right)} d t}}} = - \int{\sin^{4}{\left(t \right)} d t} + {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right)d t}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(t \right)} = 1 - \cos{\left(2 t \right)}$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$:
$$- \int{\sin^{4}{\left(t \right)} d t} + {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right)d t}}} = - \int{\sin^{4}{\left(t \right)} d t} + {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 t \right)}\right)d t}}{2}\right)}}$$
逐项积分:
$$- \int{\sin^{4}{\left(t \right)} d t} + \frac{{\color{red}{\int{\left(1 - \cos{\left(2 t \right)}\right)d t}}}}{2} = - \int{\sin^{4}{\left(t \right)} d t} + \frac{{\color{red}{\left(\int{1 d t} - \int{\cos{\left(2 t \right)} d t}\right)}}}{2}$$
应用常数法则 $$$\int c\, dt = c t$$$,使用 $$$c=1$$$:
$$- \int{\sin^{4}{\left(t \right)} d t} - \frac{\int{\cos{\left(2 t \right)} d t}}{2} + \frac{{\color{red}{\int{1 d t}}}}{2} = - \int{\sin^{4}{\left(t \right)} d t} - \frac{\int{\cos{\left(2 t \right)} d t}}{2} + \frac{{\color{red}{t}}}{2}$$
设$$$u=2 t$$$。
则$$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (步骤见»),并有$$$dt = \frac{du}{2}$$$。
所以,
$$\frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{2} = \frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
回忆一下 $$$u=2 t$$$:
$$\frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{\sin{\left({\color{red}{\left(2 t\right)}} \right)}}{4}$$
应用降幂公式 $$$\sin^{4}{\left(\alpha \right)} = - \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{\cos{\left(4 \alpha \right)}}{8} + \frac{3}{8}$$$,并令 $$$\alpha=t$$$:
$$\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - {\color{red}{\int{\sin^{4}{\left(t \right)} d t}}} = \frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - {\color{red}{\int{\left(- \frac{\cos{\left(2 t \right)}}{2} + \frac{\cos{\left(4 t \right)}}{8} + \frac{3}{8}\right)d t}}}$$
对 $$$c=\frac{1}{8}$$$ 和 $$$f{\left(t \right)} = - 4 \cos{\left(2 t \right)} + \cos{\left(4 t \right)} + 3$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$:
$$\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - {\color{red}{\int{\left(- \frac{\cos{\left(2 t \right)}}{2} + \frac{\cos{\left(4 t \right)}}{8} + \frac{3}{8}\right)d t}}} = \frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - {\color{red}{\left(\frac{\int{\left(- 4 \cos{\left(2 t \right)} + \cos{\left(4 t \right)} + 3\right)d t}}{8}\right)}}$$
逐项积分:
$$\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - \frac{{\color{red}{\int{\left(- 4 \cos{\left(2 t \right)} + \cos{\left(4 t \right)} + 3\right)d t}}}}{8} = \frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - \frac{{\color{red}{\left(\int{3 d t} - \int{4 \cos{\left(2 t \right)} d t} + \int{\cos{\left(4 t \right)} d t}\right)}}}{8}$$
应用常数法则 $$$\int c\, dt = c t$$$,使用 $$$c=3$$$:
$$\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} + \frac{\int{4 \cos{\left(2 t \right)} d t}}{8} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} - \frac{{\color{red}{\int{3 d t}}}}{8} = \frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} + \frac{\int{4 \cos{\left(2 t \right)} d t}}{8} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} - \frac{{\color{red}{\left(3 t\right)}}}{8}$$
对 $$$c=4$$$ 和 $$$f{\left(t \right)} = \cos{\left(2 t \right)}$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$:
$$\frac{t}{8} - \frac{\sin{\left(2 t \right)}}{4} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\int{4 \cos{\left(2 t \right)} d t}}}}{8} = \frac{t}{8} - \frac{\sin{\left(2 t \right)}}{4} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\left(4 \int{\cos{\left(2 t \right)} d t}\right)}}}{8}$$
积分 $$$\int{\cos{\left(2 t \right)} d t}$$$ 已经计算过:
$$\int{\cos{\left(2 t \right)} d t} = \frac{\sin{\left(2 t \right)}}{2}$$
因此,
$$\frac{t}{8} - \frac{\sin{\left(2 t \right)}}{4} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{2} = \frac{t}{8} - \frac{\sin{\left(2 t \right)}}{4} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\left(\frac{\sin{\left(2 t \right)}}{2}\right)}}}{2}$$
设$$$v=4 t$$$。
则$$$dv=\left(4 t\right)^{\prime }dt = 4 dt$$$ (步骤见»),并有$$$dt = \frac{dv}{4}$$$。
因此,
$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(4 t \right)} d t}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{8}$$
对 $$$c=\frac{1}{4}$$$ 和 $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ 应用常数倍法则 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$:
$$\frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{4}\right)}}}{8}$$
余弦函数的积分为 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{32} = \frac{t}{8} - \frac{{\color{red}{\sin{\left(v \right)}}}}{32}$$
回忆一下 $$$v=4 t$$$:
$$\frac{t}{8} - \frac{\sin{\left({\color{red}{v}} \right)}}{32} = \frac{t}{8} - \frac{\sin{\left({\color{red}{\left(4 t\right)}} \right)}}{32}$$
因此,
$$\int{\left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}$$
加上积分常数:
$$\int{\left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}+C$$
答案
$$$\int \left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)\, dt = \left(\frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}\right) + C$$$A