$$$\sin^{2}{\left(\alpha \right)}$$$ 的积分
您的输入
求$$$\int \sin^{2}{\left(\alpha \right)}\, d\alpha$$$。
解答
应用降幂公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$,并令 $$$\alpha=\alpha$$$:
$${\color{red}{\int{\sin^{2}{\left(\alpha \right)} d \alpha}}} = {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}\right)d \alpha}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(\alpha \right)} = 1 - \cos{\left(2 \alpha \right)}$$$ 应用常数倍法则 $$$\int c f{\left(\alpha \right)}\, d\alpha = c \int f{\left(\alpha \right)}\, d\alpha$$$:
$${\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}\right)d \alpha}}} = {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 \alpha \right)}\right)d \alpha}}{2}\right)}}$$
逐项积分:
$$\frac{{\color{red}{\int{\left(1 - \cos{\left(2 \alpha \right)}\right)d \alpha}}}}{2} = \frac{{\color{red}{\left(\int{1 d \alpha} - \int{\cos{\left(2 \alpha \right)} d \alpha}\right)}}}{2}$$
应用常数法则 $$$\int c\, d\alpha = \alpha c$$$,使用 $$$c=1$$$:
$$- \frac{\int{\cos{\left(2 \alpha \right)} d \alpha}}{2} + \frac{{\color{red}{\int{1 d \alpha}}}}{2} = - \frac{\int{\cos{\left(2 \alpha \right)} d \alpha}}{2} + \frac{{\color{red}{\alpha}}}{2}$$
设$$$u=2 \alpha$$$。
则$$$du=\left(2 \alpha\right)^{\prime }d\alpha = 2 d\alpha$$$ (步骤见»),并有$$$d\alpha = \frac{du}{2}$$$。
积分变为
$$\frac{\alpha}{2} - \frac{{\color{red}{\int{\cos{\left(2 \alpha \right)} d \alpha}}}}{2} = \frac{\alpha}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\frac{\alpha}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{\alpha}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\alpha}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{\alpha}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
回忆一下 $$$u=2 \alpha$$$:
$$\frac{\alpha}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{\alpha}{2} - \frac{\sin{\left({\color{red}{\left(2 \alpha\right)}} \right)}}{4}$$
因此,
$$\int{\sin^{2}{\left(\alpha \right)} d \alpha} = \frac{\alpha}{2} - \frac{\sin{\left(2 \alpha \right)}}{4}$$
加上积分常数:
$$\int{\sin^{2}{\left(\alpha \right)} d \alpha} = \frac{\alpha}{2} - \frac{\sin{\left(2 \alpha \right)}}{4}+C$$
答案
$$$\int \sin^{2}{\left(\alpha \right)}\, d\alpha = \left(\frac{\alpha}{2} - \frac{\sin{\left(2 \alpha \right)}}{4}\right) + C$$$A