$$$t \sin^{2}{\left(\omega \right)}$$$ 关于$$$t$$$的积分
您的输入
求$$$\int t \sin^{2}{\left(\omega \right)}\, dt$$$。
解答
对 $$$c=\sin^{2}{\left(\omega \right)}$$$ 和 $$$f{\left(t \right)} = t$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$:
$${\color{red}{\int{t \sin^{2}{\left(\omega \right)} d t}}} = {\color{red}{\sin^{2}{\left(\omega \right)} \int{t d t}}}$$
应用幂法则 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$\sin^{2}{\left(\omega \right)} {\color{red}{\int{t d t}}}=\sin^{2}{\left(\omega \right)} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=\sin^{2}{\left(\omega \right)} {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$
因此,
$$\int{t \sin^{2}{\left(\omega \right)} d t} = \frac{t^{2} \sin^{2}{\left(\omega \right)}}{2}$$
加上积分常数:
$$\int{t \sin^{2}{\left(\omega \right)} d t} = \frac{t^{2} \sin^{2}{\left(\omega \right)}}{2}+C$$
答案
$$$\int t \sin^{2}{\left(\omega \right)}\, dt = \frac{t^{2} \sin^{2}{\left(\omega \right)}}{2} + C$$$A