$$$- 14 x + \sin{\left(x \right)}$$$ 的积分

该计算器将求出$$$- 14 x + \sin{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(- 14 x + \sin{\left(x \right)}\right)\, dx$$$

解答

逐项积分:

$${\color{red}{\int{\left(- 14 x + \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{14 x d x} + \int{\sin{\left(x \right)} d x}\right)}}$$

$$$c=14$$$$$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{14 x d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\left(14 \int{x d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$\int{\sin{\left(x \right)} d x} - 14 {\color{red}{\int{x d x}}}=\int{\sin{\left(x \right)} d x} - 14 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\sin{\left(x \right)} d x} - 14 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

正弦函数的积分为 $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$- 7 x^{2} + {\color{red}{\int{\sin{\left(x \right)} d x}}} = - 7 x^{2} + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$

因此,

$$\int{\left(- 14 x + \sin{\left(x \right)}\right)d x} = - 7 x^{2} - \cos{\left(x \right)}$$

加上积分常数:

$$\int{\left(- 14 x + \sin{\left(x \right)}\right)d x} = - 7 x^{2} - \cos{\left(x \right)}+C$$

答案

$$$\int \left(- 14 x + \sin{\left(x \right)}\right)\, dx = \left(- 7 x^{2} - \cos{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly