$$$\sin{\left(\ln\left(2 x\right) \right)}$$$ 的积分
您的输入
求$$$\int \sin{\left(\ln\left(2 x\right) \right)}\, dx$$$。
解答
设$$$u=2 x$$$。
则$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$。
所以,
$${\color{red}{\int{\sin{\left(\ln{\left(2 x \right)} \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(\ln{\left(u \right)} \right)}}{2} d u}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = \sin{\left(\ln{\left(u \right)} \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{\sin{\left(\ln{\left(u \right)} \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(\ln{\left(u \right)} \right)} d u}}{2}\right)}}$$
对于积分$$$\int{\sin{\left(\ln{\left(u \right)} \right)} d u}$$$,使用分部积分法$$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$。
设 $$$\operatorname{\kappa}=\sin{\left(\ln{\left(u \right)} \right)}$$$ 和 $$$\operatorname{dv}=du$$$。
则 $$$\operatorname{d\kappa}=\left(\sin{\left(\ln{\left(u \right)} \right)}\right)^{\prime }du=\frac{\cos{\left(\ln{\left(u \right)} \right)}}{u} du$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d u}=u$$$ (步骤见 »)。
积分变为
$$\frac{{\color{red}{\int{\sin{\left(\ln{\left(u \right)} \right)} d u}}}}{2}=\frac{{\color{red}{\left(\sin{\left(\ln{\left(u \right)} \right)} \cdot u-\int{u \cdot \frac{\cos{\left(\ln{\left(u \right)} \right)}}{u} d u}\right)}}}{2}=\frac{{\color{red}{\left(u \sin{\left(\ln{\left(u \right)} \right)} - \int{\cos{\left(\ln{\left(u \right)} \right)} d u}\right)}}}{2}$$
对于积分$$$\int{\cos{\left(\ln{\left(u \right)} \right)} d u}$$$,使用分部积分法$$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$。
设 $$$\operatorname{\kappa}=\cos{\left(\ln{\left(u \right)} \right)}$$$ 和 $$$\operatorname{dv}=du$$$。
则 $$$\operatorname{d\kappa}=\left(\cos{\left(\ln{\left(u \right)} \right)}\right)^{\prime }du=- \frac{\sin{\left(\ln{\left(u \right)} \right)}}{u} du$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d u}=u$$$ (步骤见 »)。
因此,
$$\frac{u \sin{\left(\ln{\left(u \right)} \right)}}{2} - \frac{{\color{red}{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}}}{2}=\frac{u \sin{\left(\ln{\left(u \right)} \right)}}{2} - \frac{{\color{red}{\left(\cos{\left(\ln{\left(u \right)} \right)} \cdot u-\int{u \cdot \left(- \frac{\sin{\left(\ln{\left(u \right)} \right)}}{u}\right) d u}\right)}}}{2}=\frac{u \sin{\left(\ln{\left(u \right)} \right)}}{2} - \frac{{\color{red}{\left(u \cos{\left(\ln{\left(u \right)} \right)} - \int{\left(- \sin{\left(\ln{\left(u \right)} \right)}\right)d u}\right)}}}{2}$$
对 $$$c=-1$$$ 和 $$$f{\left(u \right)} = \sin{\left(\ln{\left(u \right)} \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\frac{u \sin{\left(\ln{\left(u \right)} \right)}}{2} - \frac{u \cos{\left(\ln{\left(u \right)} \right)}}{2} + \frac{{\color{red}{\int{\left(- \sin{\left(\ln{\left(u \right)} \right)}\right)d u}}}}{2} = \frac{u \sin{\left(\ln{\left(u \right)} \right)}}{2} - \frac{u \cos{\left(\ln{\left(u \right)} \right)}}{2} + \frac{{\color{red}{\left(- \int{\sin{\left(\ln{\left(u \right)} \right)} d u}\right)}}}{2}$$
我们得到了一个之前见过的积分。
因此,我们得到了关于该积分的如下简单等式:
$$\frac{\int{\sin{\left(\ln{\left(u \right)} \right)} d u}}{2} = \frac{u \sin{\left(\ln{\left(u \right)} \right)}}{2} - \frac{u \cos{\left(\ln{\left(u \right)} \right)}}{2} - \frac{\int{\sin{\left(\ln{\left(u \right)} \right)} d u}}{2}$$
解得
$$\int{\sin{\left(\ln{\left(u \right)} \right)} d u} = \frac{u \left(\sin{\left(\ln{\left(u \right)} \right)} - \cos{\left(\ln{\left(u \right)} \right)}\right)}{2}$$
因此,
$$\frac{{\color{red}{\int{\sin{\left(\ln{\left(u \right)} \right)} d u}}}}{2} = \frac{{\color{red}{\left(\frac{u \left(\sin{\left(\ln{\left(u \right)} \right)} - \cos{\left(\ln{\left(u \right)} \right)}\right)}{2}\right)}}}{2}$$
回忆一下 $$$u=2 x$$$:
$$\frac{{\color{red}{u}} \left(\sin{\left(\ln{\left({\color{red}{u}} \right)} \right)} - \cos{\left(\ln{\left({\color{red}{u}} \right)} \right)}\right)}{4} = \frac{{\color{red}{\left(2 x\right)}} \left(\sin{\left(\ln{\left({\color{red}{\left(2 x\right)}} \right)} \right)} - \cos{\left(\ln{\left({\color{red}{\left(2 x\right)}} \right)} \right)}\right)}{4}$$
因此,
$$\int{\sin{\left(\ln{\left(2 x \right)} \right)} d x} = \frac{x \left(\sin{\left(\ln{\left(2 x \right)} \right)} - \cos{\left(\ln{\left(2 x \right)} \right)}\right)}{2}$$
化简:
$$\int{\sin{\left(\ln{\left(2 x \right)} \right)} d x} = - \frac{\sqrt{2} x \cos{\left(\ln{\left(x \right)} + \ln{\left(2 \right)} + \frac{\pi}{4} \right)}}{2}$$
加上积分常数:
$$\int{\sin{\left(\ln{\left(2 x \right)} \right)} d x} = - \frac{\sqrt{2} x \cos{\left(\ln{\left(x \right)} + \ln{\left(2 \right)} + \frac{\pi}{4} \right)}}{2}+C$$
答案
$$$\int \sin{\left(\ln\left(2 x\right) \right)}\, dx = - \frac{\sqrt{2} x \cos{\left(\ln\left(x\right) + \ln\left(2\right) + \frac{\pi}{4} \right)}}{2} + C$$$A