$$$\sin{\left(\pi x \right)}$$$ 的积分
您的输入
求$$$\int \sin{\left(\pi x \right)}\, dx$$$。
解答
设$$$u=\pi x$$$。
则$$$du=\left(\pi x\right)^{\prime }dx = \pi dx$$$ (步骤见»),并有$$$dx = \frac{du}{\pi}$$$。
因此,
$${\color{red}{\int{\sin{\left(\pi x \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi} d u}}}$$
对 $$$c=\frac{1}{\pi}$$$ 和 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi} d u}}} = {\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{\pi}}}$$
正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{\pi} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{\pi}$$
回忆一下 $$$u=\pi x$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{\pi} = - \frac{\cos{\left({\color{red}{\pi x}} \right)}}{\pi}$$
因此,
$$\int{\sin{\left(\pi x \right)} d x} = - \frac{\cos{\left(\pi x \right)}}{\pi}$$
加上积分常数:
$$\int{\sin{\left(\pi x \right)} d x} = - \frac{\cos{\left(\pi x \right)}}{\pi}+C$$
答案
$$$\int \sin{\left(\pi x \right)}\, dx = - \frac{\cos{\left(\pi x \right)}}{\pi} + C$$$A