$$$\left(- \tan{\left(x \right)} + \sec{\left(x \right)}\right) \sec{\left(x \right)}$$$ 的积分

该计算器将求出$$$\left(- \tan{\left(x \right)} + \sec{\left(x \right)}\right) \sec{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(- \tan{\left(x \right)} + \sec{\left(x \right)}\right) \sec{\left(x \right)}\, dx$$$

解答

Expand the expression:

$${\color{red}{\int{\left(- \tan{\left(x \right)} + \sec{\left(x \right)}\right) \sec{\left(x \right)} d x}}} = {\color{red}{\int{\left(- \tan{\left(x \right)} \sec{\left(x \right)} + \sec^{2}{\left(x \right)}\right)d x}}}$$

逐项积分:

$${\color{red}{\int{\left(- \tan{\left(x \right)} \sec{\left(x \right)} + \sec^{2}{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\tan{\left(x \right)} \sec{\left(x \right)} d x} + \int{\sec^{2}{\left(x \right)} d x}\right)}}$$

$$$\sec^{2}{\left(x \right)}$$$ 的积分为 $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:

$$- \int{\tan{\left(x \right)} \sec{\left(x \right)} d x} + {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = - \int{\tan{\left(x \right)} \sec{\left(x \right)} d x} + {\color{red}{\tan{\left(x \right)}}}$$

$$$\tan{\left(x \right)} \sec{\left(x \right)}$$$ 的积分为 $$$\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} = \sec{\left(x \right)}$$$:

$$\tan{\left(x \right)} - {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = \tan{\left(x \right)} - {\color{red}{\sec{\left(x \right)}}}$$

因此,

$$\int{\left(- \tan{\left(x \right)} + \sec{\left(x \right)}\right) \sec{\left(x \right)} d x} = \tan{\left(x \right)} - \sec{\left(x \right)}$$

加上积分常数:

$$\int{\left(- \tan{\left(x \right)} + \sec{\left(x \right)}\right) \sec{\left(x \right)} d x} = \tan{\left(x \right)} - \sec{\left(x \right)}+C$$

答案

$$$\int \left(- \tan{\left(x \right)} + \sec{\left(x \right)}\right) \sec{\left(x \right)}\, dx = \left(\tan{\left(x \right)} - \sec{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly