$$$x^{- a} \ln\left(n\right)$$$ 关于$$$x$$$的积分

该计算器将求出$$$x^{- a} \ln\left(n\right)$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int x^{- a} \ln\left(n\right)\, dx$$$

解答

$$$c=\ln{\left(n \right)}$$$$$$f{\left(x \right)} = x^{- a}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{x^{- a} \ln{\left(n \right)} d x}}} = {\color{red}{\ln{\left(n \right)} \int{x^{- a} d x}}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=- a$$$

$$\ln{\left(n \right)} {\color{red}{\int{x^{- a} d x}}}=\ln{\left(n \right)} {\color{red}{\frac{x^{1 - a}}{1 - a}}}=\ln{\left(n \right)} {\color{red}{\frac{x^{1 - a}}{1 - a}}}$$

因此,

$$\int{x^{- a} \ln{\left(n \right)} d x} = \frac{x^{1 - a} \ln{\left(n \right)}}{1 - a}$$

化简:

$$\int{x^{- a} \ln{\left(n \right)} d x} = - \frac{x^{1 - a} \ln{\left(n \right)}}{a - 1}$$

加上积分常数:

$$\int{x^{- a} \ln{\left(n \right)} d x} = - \frac{x^{1 - a} \ln{\left(n \right)}}{a - 1}+C$$

答案

$$$\int x^{- a} \ln\left(n\right)\, dx = - \frac{x^{1 - a} \ln\left(n\right)}{a - 1} + C$$$A


Please try a new game Rotatly