$$$\frac{\ln\left(y\right)}{y}$$$ 的积分
您的输入
求$$$\int \frac{\ln\left(y\right)}{y}\, dy$$$。
解答
设$$$u=\ln{\left(y \right)}$$$。
则$$$du=\left(\ln{\left(y \right)}\right)^{\prime }dy = \frac{dy}{y}$$$ (步骤见»),并有$$$\frac{dy}{y} = du$$$。
该积分可以改写为
$${\color{red}{\int{\frac{\ln{\left(y \right)}}{y} d y}}} = {\color{red}{\int{u d u}}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$${\color{red}{\int{u d u}}}={\color{red}{\frac{u^{1 + 1}}{1 + 1}}}={\color{red}{\left(\frac{u^{2}}{2}\right)}}$$
回忆一下 $$$u=\ln{\left(y \right)}$$$:
$$\frac{{\color{red}{u}}^{2}}{2} = \frac{{\color{red}{\ln{\left(y \right)}}}^{2}}{2}$$
因此,
$$\int{\frac{\ln{\left(y \right)}}{y} d y} = \frac{\ln{\left(y \right)}^{2}}{2}$$
加上积分常数:
$$\int{\frac{\ln{\left(y \right)}}{y} d y} = \frac{\ln{\left(y \right)}^{2}}{2}+C$$
答案
$$$\int \frac{\ln\left(y\right)}{y}\, dy = \frac{\ln^{2}\left(y\right)}{2} + C$$$A