$$$\ln\left(\frac{x}{2} - 1\right)$$$ 的积分
您的输入
求$$$\int \ln\left(\frac{x}{2} - 1\right)\, dx$$$。
解答
设$$$u=\frac{x}{2} - 1$$$。
则$$$du=\left(\frac{x}{2} - 1\right)^{\prime }dx = \frac{dx}{2}$$$ (步骤见»),并有$$$dx = 2 du$$$。
积分变为
$${\color{red}{\int{\ln{\left(\frac{x}{2} - 1 \right)} d x}}} = {\color{red}{\int{2 \ln{\left(u \right)} d u}}}$$
对 $$$c=2$$$ 和 $$$f{\left(u \right)} = \ln{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{2 \ln{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\ln{\left(u \right)} d u}\right)}}$$
对于积分$$$\int{\ln{\left(u \right)} d u}$$$,使用分部积分法$$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$。
设 $$$\operatorname{g}=\ln{\left(u \right)}$$$ 和 $$$\operatorname{dv}=du$$$。
则 $$$\operatorname{dg}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d u}=u$$$ (步骤见 »)。
因此,
$$2 {\color{red}{\int{\ln{\left(u \right)} d u}}}=2 {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=2 {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$$2 u \ln{\left(u \right)} - 2 {\color{red}{\int{1 d u}}} = 2 u \ln{\left(u \right)} - 2 {\color{red}{u}}$$
回忆一下 $$$u=\frac{x}{2} - 1$$$:
$$- 2 {\color{red}{u}} + 2 {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - 2 {\color{red}{\left(\frac{x}{2} - 1\right)}} + 2 {\color{red}{\left(\frac{x}{2} - 1\right)}} \ln{\left({\color{red}{\left(\frac{x}{2} - 1\right)}} \right)}$$
因此,
$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + 2 \left(\frac{x}{2} - 1\right) \ln{\left(\frac{x}{2} - 1 \right)} + 2$$
化简:
$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + \left(x - 2\right) \ln{\left(\frac{x}{2} - 1 \right)} + 2$$
加上积分常数(并从表达式中去除常数项):
$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + \left(x - 2\right) \ln{\left(\frac{x}{2} - 1 \right)}+C$$
答案
$$$\int \ln\left(\frac{x}{2} - 1\right)\, dx = \left(- x + \left(x - 2\right) \ln\left(\frac{x}{2} - 1\right)\right) + C$$$A