$$$a^{x} \ln\left(a\right)$$$ 关于$$$x$$$的积分

该计算器将求出$$$a^{x} \ln\left(a\right)$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int a^{x} \ln\left(a\right)\, dx$$$

解答

$$$c=\ln{\left(a \right)}$$$$$$f{\left(x \right)} = a^{x}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{a^{x} \ln{\left(a \right)} d x}}} = {\color{red}{\ln{\left(a \right)} \int{a^{x} d x}}}$$

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:

$$\ln{\left(a \right)} {\color{red}{\int{a^{x} d x}}} = \ln{\left(a \right)} {\color{red}{\frac{a^{x}}{\ln{\left(a \right)}}}}$$

因此,

$$\int{a^{x} \ln{\left(a \right)} d x} = a^{x}$$

加上积分常数:

$$\int{a^{x} \ln{\left(a \right)} d x} = a^{x}+C$$

答案

$$$\int a^{x} \ln\left(a\right)\, dx = a^{x} + C$$$A


Please try a new game Rotatly