$$$\eta n - x^{3}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \left(\eta n - x^{3}\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(\eta n - x^{3}\right)d x}}} = {\color{red}{\left(- \int{x^{3} d x} + \int{\eta n d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=3$$$:
$$\int{\eta n d x} - {\color{red}{\int{x^{3} d x}}}=\int{\eta n d x} - {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=\int{\eta n d x} - {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=\eta n$$$:
$$- \frac{x^{4}}{4} + {\color{red}{\int{\eta n d x}}} = - \frac{x^{4}}{4} + {\color{red}{\eta n x}}$$
因此,
$$\int{\left(\eta n - x^{3}\right)d x} = \eta n x - \frac{x^{4}}{4}$$
化简:
$$\int{\left(\eta n - x^{3}\right)d x} = x \left(\eta n - \frac{x^{3}}{4}\right)$$
加上积分常数:
$$\int{\left(\eta n - x^{3}\right)d x} = x \left(\eta n - \frac{x^{3}}{4}\right)+C$$
答案
$$$\int \left(\eta n - x^{3}\right)\, dx = x \left(\eta n - \frac{x^{3}}{4}\right) + C$$$A